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Abstract

In this thesis, we present a few different topics arising in the study of the learning dynamics

called fictitious play. We investigate the combinatorial properties of this dynamical system

describing the strategy sequences of the players, and in particular deduce a combinatorial

classification of zero-sum games with three strategies per player. We further obtain re-

sults about the limit sets and asymptotic payoff performance of fictitious play as a learning

algorithm.

In order to study coexistence of regular (periodic and quasi-periodic) and chaotic

behaviour in fictitious play and a related continuous, piecewise affine flow on the three-

sphere, we look at its planar first return maps and investigate several model problems for

such maps. We prove a non-recurrence result for non-self maps of regions in the plane,

similar to Brouwer’s classical result for planar homeomorphisms. Finally, we consider a

family of piecewise affine maps of the square, which is very similar to the first return maps

of fictitious play, but simple enough for explicit calculations, and prove several results about

its dynamics, particularly its invariant circles and regions.
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Introduction

Modern game theory began in the first half of the 20th century, in its formative years

most notably driven by John von Neumann’s paper Zur Theorie der Gesellschaftsspiele

(1928, [94]) and his book with Oskar Morgenstern Theory of Games and Economic Be-

havior (1944, [69]). It provides a framework to mathematically formalise decision making

in situations of conflict and cooperation, in other words, situations in which choice under

uncertainty governs the outcome for the participants.

Since its ascent, game theory has proven to be an immensely powerful tool to de-

scribe and analyse interactions of individuals involved in situations of mutual influence and

interdependence with each other or an inanimate ‘nature’, in a highly diverse range of fields,

such as economics, biology and genetics, psychology and sociology, political science, and

more recently, computer science. It provides a means of analysing the interactions of mar-

ket participants; it can be used to model the ecological and evolutionary interplay of species

or individuals, as well as human behaviour on individual or societal level, ranging up to the

scale of international political decision making; finally, it is successfully applied in the mod-

elling and design of computer networks with complex interaction patterns between large

numbers of (electronic) agents. Examples include predator-prey models in evolutionary

biology, the analysis of international conflicts in political science, the analysis and design

of automatic electronic trading systems, and the design and operation of wireless networks

consisting of large numbers of nodes which share common resources (such as bandwidth).

From a theoretical point of view, mathematical analysis of game-theoretic models

helps to understand and describe such pre-existing, observed situations of conflict and co-

operation. For instance, after the realisation of the importance of notions of equilibrium

in games (most prominently introduced by John Forbes Nash, Jr. in his PhD thesis1), the

analysis of certain predator-prey models and other evolutionary settings revealed hidden

patterns in large-scale animal behaviour. In particular, it facilitated the understanding of

natural balances, such as proportions of predator and prey animals, or males and females of

a given species, as ‘Nash equilibria’ of the underlying ‘games’.

1Published in 1951 as the paper Non-cooperative games [72].
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More practically, surpassing this descriptive approach, the tools developed in game

theory help to design or affect such situations, by better understanding complex interaction

networks, attempting to model and predict individual or collective behaviour, and set up

regulations and policies (in the case of electronic networks, protocols) according to certain

outcome goals. In this context the term ‘decision theory’ is often used synonymously.

Almost from the very beginning, the development of (modern) game theory has

been linked with a dynamical view of ‘games’ being ‘played’ repeatedly or continuously in

time, for instance, in ongoing evolutionary or economic processes. This led to the study of a

large number of mathematical dynamical systems modelling such processes, often referred

to as evolutionary dynamics or learning dynamics2.

An early example of such dynamical systems is the famous Lotka-Volterra predator-

prey model, proposed in the 1920s as an explanation of the fluctuations in different Adriatic

fish populations in response to a changing fishing behaviour during the first world war.

The invention of this model preceded a game-theoretic interpretation of the setting, but was

later recognized as a special case of the famous ‘replicator dynamics’ in evolutionary game

theory. Other examples include learning processes studied in psychology and behavioural

economy, such as ‘reinforcement learning’, a process capturing the dynamics of an agent

learning by responding accordingly to positive and negative feedback from its past actions.

This thesis is mainly concerned with one of the earliest learning algorithms, known

in its different forms as best response or fictitious play dynamics. The basic idea of fictitious

play is that at each stage of a repeatedly or continuously played game, each of the involved

players assumes the probability distribution of her opponents’ strategies to be stationary.

She then chooses to play a strategy which maximises her expected payoff against the em-

pirical average play of her opponents, as observed through their past play. This is a so-called

myopic learning algorithm, as it does not incorporate any notion of predictive or strategic

behaviour: the players do not attempt to influence their opponents’ future behaviour through

strategic considerations, but only try to maximise their respective next-round payoff.

Introduced in 1951 by George W. Brown [22], the original purpose of fictitious play

was not to model actually observed behaviour, but rather to serve as a computational device

to study the underlying game. At that time, when Nash’s recently proposed equilibrium

concept began to be recognised as crucial to understanding games, it was a computational

challenge to determine Nash equilibria of a given game. It was observed that in two-player

zero-sum games3, fictitious play dynamics converges to the set of Nash equilibria, and

2The term learning dynamics is usually employed when ‘players’ are assumed to be rationally and strate-
gically decision-making agents, whereas evolutionary dynamics is more often used to describe the interplay of
merely mechanistically responding agents; however, this distinction is quite vague and not always appropriate.

3A zero-sum game is one in which the interests of the two players are diametrically opposed, the gain of
one being exactly the loss of the other.
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hence provides a means of numerical approximation of equilibria. The name ‘fictitious

play’ derives from the following intuition: rather than expecting rational players to follow

the fictitious play rule, one can assume that both players ‘fictitiously’ play the game ac-

cording to the rule to pre-compute the Nash equilibrium, and then start the actual game by

immediately using this equilibrium strategy.

Indeed, the earliest results on fictitious play confirmed that it converges to the set

of Nash equilibria in the most important class of games at the time, two-player zero-sum

games. Later on, similar convergence properties have been proven for various other rele-

vant classes of games (for example, two-player games in which one of the players has at

most two strategies, identical interest games, or potential games). However, in 1964 Lloyd

S. Shapley constructed a famous example [87] demonstrating that, in general, fictitious play

for two-player games with more than two strategies for each player need not converge.

Shapley’s example of a game with two players, each with three strategies, can be

seen as a variant of the ‘Rock-Paper-Scissors’ game: it carries a cyclical structure with

no single ‘best strategy’ for either player. For this game, fictitious play (which effectively

describes the dynamics of the players’ empirical strategy averages) converges to a stable

limit cycle for typical initial conditions. This limit cycle can be recognised as the cyclic be-

haviour of the two players continuously trying to choose a strategy beating their opponent’s

current average play (for instance, choosing to play ‘rock’ to beat an average which is pre-

dominantly ‘scissors’), soon triggering an analogous response from the other player (who

starts to play ‘paper’ to beat the just chosen ‘rock’), and so on. Hence the strategies and,

crucially, their time averages are caught in an infinite loop of cyclical strategy switching.

Besides showing that fictitious play does not necessarily converge to the set of Nash

equilibria, Shapley’s example provided a dynamical system that sparked mathematical in-

terest in its own right. More recently, Colin Sparrow, Sebastian van Strien and Christopher

Harris [90, 93] investigated fictitious play dynamics for a one-parameter family of two-

player games closely related to Shapley’s example and with a similar cyclic Rock-Paper-

Scissors-like structure. They demonstrated that this system has rather remarkable dynam-

ical behaviour, in particular being chaotic in a very strong sense, containing elements of

random walk dynamics, and exhibiting features which cannot occur in smooth dynamical

systems4. Furthermore, in [92] van Strien showed that fictitious play can be viewed as a

particular example of a more general class of piecewise affine, not differentiable Hamilto-

nian systems. In analogy to how circle diffeomorphisms can be modelled by circle rotations

and how the Lozi map can be regarded as a simplified piecewise affine version of the Hénon

map, these piecewise linear Hamiltonian flows (in this case, on the three-sphere) could pro-

4Continuous-time fictitious play gives rise to a continuous and piecewise affine but typically not differen-
tiable dynamical system.

3



vide simplified models for smooth Hamiltonian flows, retaining the dynamical complexity

but often allowing more explicit study. This motivates fictitious play dynamics from a

purely mathematical point of view, even after stripping off all of its numerous applications.

The work by Sparrow and van Strien on the complex behaviour observed in fictitious play

forms a starting point for the investigations presented in this thesis.

To set the stage for the main part of this thesis, in Chapter 1 we first introduce the

necessary notions and definitions of game theory and fictitious play dynamics. We then

give an overview of classical results on fictitious play in general, and the zero-sum case in

particular, with a focus on its convergence properties. Finally, we present the recent results

by Sparrow and van Strien on the chaotic dynamics emerging from fictitious play and a

related class of Hamiltonian systems.

In the main chapter of this thesis, Chapter 2, we investigate fictitious play from a

combinatorial point of view, by studying the natural coding of its dynamics in terms of the

players’ strategy itineraries (the sequence of strategies taken by the players along fictitious

play trajectories). This leads to a combinatorial classification of zero-sum games with three

strategies per player5 and a numerical investigation of their ergodic properties. This chapter

partially consists of joint work with Sebastian van Strien, published in 2011 as [76].

Chapter 3 is available as a preprint [74] and is submitted for publication at the time

of submission of this thesis. It compares the performance of fictitious play as a learning

algorithm (measured as the time-averaged payoff to the players) and Nash equilibrium play.

We show that Nash equilibrium need not generally be better, and is indeed Pareto dominated

by fictitious play in many games. We also observe that while fictitious play does not neces-

sarily converge to Nash equilibrium, it does converge to the larger set of ‘coarse correlated

equilibria’. This shows that, in the limit, the performance of this very simple learning rule

is comparable to some more sophisticated algorithms, such as ‘regret-based learning’.

Chapters 4 and 5 can be regarded as separate investigations, motivated by questions

arising in the study of certain maps related to the fictitious play flow in zero-sum games

with three strategies per player. This flow in four-space is decomposable into a (radial)

motion converging to Nash equilibrium and a (spherical) volume-preserving flow on the

three-sphere (the ‘induced flow’). The latter contains all the information and complexity

of the combinatorial behaviour of the fictitious play dynamics; it admits certain topological

disks as first return sections, with (planar) first return maps whose study is therefore central

to understanding fictitious play dynamics.

5The case of 3 × 3 games, that is, two-player games with three strategies for each player, provides the
simplest case in which fictitious play dynamics can have non-trivial, and in fact highly complicated, dynamical
behaviour. The intuitive reason for this is that 3×3 games have the lowest dimension, such that both cooperative
and competitive elements can be embedded in the game (as ‘subgames’). Two-player games where one of the
players has less than three strategies are known to converge in a simple cyclical way (see Chapter 1).
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Chapter 4 is published in 2013 as [75]. It tackles a primarily topological question

about the dynamics of iteration of planar homeomorphisms, very close in flavour to the clas-

sical non-recurrence results of Brouwer6, tailored to the special setting of non-self maps of

planar continua. The main result of this chapter states that under a few technical topolog-

ical conditions, a fixed point free orientation-preserving homeomorphism from one planar

continuum to another has no recurrent orbits within any simply connected component of

the intersection of its domain and image.

Chapter 5 is available as a preprint [73] and is submitted for publication at the time

of submission of this thesis. It studies the dynamics of a one-parameter family of piecewise

affine homeomorphisms of the square. This forms an attempt to study phenomenologically

the first return maps of the induced flow of fictitious play in 3 × 3 zero-sum games. For

this, we consider the simplest possible (non-trivial) model maps of a compact disk in the

plane, with the same formal properties as the first return maps: continuous, area-preserving,

piecewise affine and fixing the disk’s boundary pointwise. In this chapter we present an

investigation of invariant circles and regions for these maps, determining their dynamics

completely for certain parameter values. We then make observations about their ergodic

properties, and compare them to twist maps, to which they are closely related.

The range of phenomena observed through computational experiments turns out

to be quite similar to the one in the numerical investigation of fictitious play dynamics in

Chapter 2, confirming the validity of this family of maps as models for the fictitious play

first return maps. Although these first return maps are typically much richer (for instance,

having many more pieces), a better understanding of this or similar families of piecewise

affine planar maps might provide valuable insight into at least qualitative properties of fic-

titious play, and more generally, piecewise linear Hamiltonian flows.

Publications by the author:

• Piecewise linear Hamiltonian flows associated to zero-sum games: transition com-

binatorics and questions on ergodicity (with S. van Strien). Regul. Chaotic Dyn.,

16(1-2):129-154, 2011.

• Fixed point theorem for non-self maps of regions in the plane. Topology Appl.,

160(7):915-923, 2013.

• Dynamics of a continuous piecewise affine map of the square. arXiv:1305.4282,

2013. Submitted for publication to Phys. D.

• Payoff performance of fictitious play (with S. van Strien). arXiv:1308.4049, 2013.
6Brouwer’s classical plane translation theorem and its modern versions due to John Franks and others state

that an orientation-preserving fixed point free homeomorphism of the plane has no recurrent points.
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Chapter 1

Game theory and fictitious play

In this chapter we introduce basic notions from game theory and the learning dynamics

called fictitious play. Our focus will be on two-player games given by a bimatrix, for which

we will discuss a geometric representation of the strategy space. We will then present an

overview of classical results on fictitious play dynamics and discuss its properties in the

special setting of zero-sum games. The main purpose of this chapter is to set the stage for

the investigation of fictitious play dynamics in zero-sum games in Chapter 2.

Some of the earliest and most prominent works that started game theory in its mod-

ern form are the paper Zur Theorie der Gesellschaftsspiele from 1928 by von Neumann [94]

and the book Theory of Games and Economic Behavior from 1944 by Morgenstern and von

Neumann [69], introducing many of the notions used in game theory to this day, followed

by Nash’s PhD thesis (in particular, its part on equilibria in games, published in 1951 as the

paper Non-cooperative games [72]).

For further reference on game theory in general, and learning dynamics in particu-

lar, the reader is referred to one of the books by Fudenberg and Tirole [34], Fudenberg and

Levine [32], Hofbauer and Sigmund [50, 51], Weibull [95] or Sandholm [84]. For an excel-

lent overview of the dynamics of the most popular learning algorithms, see the introductory

book by Young [99] or the review articles by Hart [44] and Fudenberg and Levine [33].

We begin by giving the notion of a game a mathematical definition.

Definition 1.1. A finite game in normal form is a tuple Γ = (I, {S i}i∈I, {ui}i∈I), where

• I = {1, . . . ,N},N ∈ N, is a (finite) collection of players;

• S i = {1, . . . , ni}, ni ∈ N, is the (finite) collection of pure strategies of player i ∈ I;

• ui : S 1 × · · · × S N → R is the payoff function of player i ∈ I.

The space of strategy tuples is denoted by S = S 1 × · · · × S N and an element s ∈ S is called

a (pure) strategy profile.
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The interpretation of this definition is as follows. To play the game Γ, each player

i ∈ I chooses one of her strategies si ∈ S i, independently and without knowing the other

players’ choices. Then, each player i receives a payoff ui(s1, . . . , sN), which depends both

on her and her opponents’ strategies. Each player strives to maximise her own payoff.1

Instead of restricting to the discrete sets of pure strategies as above, we further

consider the so-called mixed strategies. For i ∈ I, we write

Σi B

x ∈ Rni : xk ≥ 0,
ni∑

k=1

xk = 1


for the (geometric representation of) probability distributions over a player’s pure strategies.

Here, implicitly each strategy k ∈ S i (or more precisely, the distribution assigning full

probability to this strategy) is identified with the kth standard unit vector in Rni . Note that

Σi is geometrically the (ni − 1)-dimensional simplex in Rni spanned by these ni unit vectors.

We write Σ = Σ1 × · · · × ΣN and say that σ ∈ Σ is a (mixed) strategy profile.

Since mixed strategies are probability distributions over pure strategies, we can

linearly extend the payoff functions to ũi : Σ → R. For this, let σ = (σ1, . . . , σN) ∈ Σ,

where each σi ∈ Σi is a probability distribution over the pure strategies of player i, σi =

(σ1
i , . . . , σ

ni
i ). Then we define

ũi(σ) = ũi(σ1, . . . , σN) B
n1∑

k1=1

· · ·

nN∑
kN=1

σk1
1 · · ·σ

kN
N ui(k1, . . . , kN).

By linearity, this can be interpreted as the expected payoff to player i, if each of the players

is randomising over her strategies according to her mixed strategy σi. Henceforth, we will

not distinguish between ui and ũi, and refer to both payoff functions as ui.

Throughout this entire thesis, we will focus our attention on two-player games. This

setting allows for a simple representation of the two players’ payoff functions as matrices,

hence encoding the entire information about a game in a ‘bimatrix’.

1.1 Bimatrix games

Let a two-player game Γ be defined as above, with players 1 and 2 having m and n (pure)

strategies, respectively. Then, the two payoff functions u1, u2 : Σ → R can be represented

by a bimatrix, that is, a tuple of matrices (A, B), where A, B ∈ Rm×n.

For this, we identify the standard unit vector ei ∈ Σ1 with the first player’s strategy

1Note that in general, no assumption is made on any connections between the players’ payoff functions ui.
In particular, no notion of ‘winning’ or ‘losing’ the game is implied automatically; in fact, the payoff functions
might be such that all players benefit from the same strategy tuples.
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i ∈ {1, . . . ,m} and e j ∈ Σ2 with the second player’s strategy j ∈ {1, . . . , n}. Then, let the

(i, j) entry of A be given by ai j = e>i Ae j = u1(i, j), and similarly, bi j = e>i Be j = u2(i, j). In

other words, the (i, j) entries of the matrices A and B are the respective payoffs of the (pure)

strategy profile (i, j) to the players 1 and 2. By linearity, it follows immediately that the

(expected) payoffs of the (mixed) strategy profile (p, q) ∈ Σ1 × Σ2 = Σ for players 1 and 2

are given by u1(p, q) = p>Aq and u2(p, q) = p>Bq, respectively. A finite two-player game

given in this form (A, B) is called a bimatrix game.

For convenience, in the case of bimatrix games we will use the notation ΣA = Σ1,

ΣB = Σ2, uA = u1, uB = u2, and we will interpret vectors p ∈ ΣA as row vectors in R1×m, so

that for (p, q) ∈ Σ we can write

uA(p, q) = pAq and uB(p, q) = pBq.

Now that we defined a setting for two-player games, we will introduce some strate-

gic notions, expressing how players can reason about a game and evaluate their different

strategy options when pursuing their goal of payoff maximisation.

1.1.1 Best response and Nash equilibrium

We define the so-called best response correspondences, which assign payoff-maximising

response strategies to any given strategy of a player’s opponent. Let (p, q) ∈ Σ, then

BRA(q) B arg max
p̄∈ΣA

p̄Aq and BRB(p) B arg max
q̄∈ΣB

pBq̄.

We further denote the maximal-payoff functions

Ā(q) B max
p̄∈ΣA

p̄Aq and B̄(p) B max
q̄∈ΣB

pBq̄,

so that Ā(q) = uA( p̄, q) for p̄ ∈ BRA(q) and B̄(p) = uB(p, q̄) for q̄ ∈ BRB(p). Observe that

Ā(q) = maxi (Aq)i and B̄(p) = max j (pB) j: the maximal payoff to player A given player B’s

strategy q is equal to the maximal entry of the vector Aq, and similarly for player B.

For generic bimatrix games, the best response correspondences BRA : ΣB → ΣA and

BRB : ΣA → ΣB are almost everywhere single-valued, with the exception of a finite number

of hyperplanes. The singleton value taken by BRA whenever it is single-valued is always

one of the standard unit vectors ei, i = 1, . . . ,m, corresponding to a pure strategy of player

A. When BRA(p) is not a singleton, it is the set of convex combinations of a subset of

{ei : i = 1, . . . ,m}, that is, a face of the simplex ΣA, or possibly all of ΣA. The analogous

statement holds for BRB.

8



It follows that ΣA and ΣB can be divided into respectively n and m regions (in fact,

convex polytopes):

RB
j B BRB

−1(e j) ⊆ ΣA for j = 1, . . . , n,

RA
i B BRA

−1(ei) ⊆ ΣB for i = 1, . . . ,m.

We will call RA
i the preference region of strategy i for player A, as it is the subset of the

second player’s strategies against which player A expects the highest payoff by playing

strategy i; similarly, for RB
j . We also use the following notation for the subsets of Σ on

which both players have a fixed strategy preference:

Ri j B RB
j × RA

i for i = 1, . . . ,m and j = 1, . . . , n.

Next, note that for a generic game (A, B), the subset of ΣB on which BRA contains

two distinct pure strategies ei and ei′ (and hence, automatically, all their convex combina-

tions) is a codimension-one hyperplane of ΣB:

ZA
ii′ B {q ∈ ΣB : (Aq)i = (Aq)i′ ≥ (Aq)k ∀k = 1, . . . ,m} = RA

i ∩ RA
i′ ⊆ ΣB.

Analogously, for j, j′ ∈ {1, . . . , n},

ZB
j j′ B {p ∈ ΣA : (pB) j = (pB) j′ ≥ (pB)l ∀l = 1, . . . , n} = RB

j ∩ RB
j′ ⊆ ΣA.

These hyperplanes are subsets of linear codimension-one subspaces of ΣB and ΣA, respec-

tively. See Figure 1.1 for an illustration in the case n = m = 3. We call these sets the

indifference sets of players A and B. As we will see later, they turn out to be of crucial im-

portance to understanding learning dynamics on the space Σ, when this dynamics is defined

by means of the best response correspondences.

The following notion was first introduced by John Nash in his PhD thesis (see [72]).

Definition 1.2. A (mixed) strategy profile (p̄, q̄) ∈ Σ is called a Nash equilibrium, if

p̄ ∈ BRA(q̄) and q̄ ∈ BRB( p̄).

If a Nash equilibrium lies in the interior of Σ, it is called completely mixed.

The key idea is that in a Nash equilibrium, neither player benefits from unilateral

deviation. Note that this does not necessarily imply that both players are receiving the

highest possible payoff, but rather that they are both receiving the highest possible payoff

given their opponent’s strategy.
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23
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12
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Figure 1.1: Geometry of a 3 × 3 bimatrix game. The spaces of mixed strategies ΣA and
ΣB are each a simplex spanned by three vertices (the pure strategies). Note the convex
preference regions RB

j ⊂ ΣA and RA
i ⊂ ΣB, their intersections as indifference sets ZB

j j′ and
ZA

ii′ , and the projections to ΣA and ΣB of the (in this case, unique) Nash equilibrium (EA, EB)
at the intersection of all these sets.

The concept of Nash equilibrium is central to most of modern game theory; the

study of learning algorithms for games is to a large extent concerned with questions about

whether and how convergence to Nash equilibrium can be achieved. It has been proved by

Nash [72] that the set of Nash equilibria is non-empty for every bimatrix game (for several

alternative proofs, see also Hofbauer [49]). On the other hand, generally, Nash equilibrium

need not be unique; the set of Nash equilibria can be a discrete set of points in Σ or even

contain a continuum of points.

The following lemma is a standard fact and easy to check.

Lemma 1.3. The point (EA, EB) ∈ int(Σ) is a (completely mixed) Nash equilibrium of an

m × n bimatrix game (A, B) if and only if, for all i, i′ = 1, . . . ,m and j, j′ = 1, . . . , n,

(AEB)i = (AEB)i′ and (EAB) j = (EAB) j′ .

Note that this implies that EA ∈ RB
j and EB ∈ RA

i , for all i, j. It follows that

(EA, EB) ∈ Ri j, and also EA ∈ ZB
ii′ , EB ∈ ZA

j j′ , for all i, i′, j, j′.

1.1.2 Game equivalences

For use in the context of learning dynamics, it will be convenient to introduce a notion of

equivalence of games. As we will see in Section 1.2, fictitious play dynamics is defined in

terms of the best response correspondences BRA and BRB, so that different bimatrix games

which have the same best response structures produce identical fictitious play systems.

This gives rise to the notion of ‘best response equivalence’.
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Definition 1.4. Two m × n bimatrix games (A, B) and (Ã, B̃) are best response equivalent,

if for all (p, q) ∈ Σ,

BRA(q) = BRÃ(q) and BRB(p) = BRB̃(p).

Another, stronger, notion of game equivalence is ‘better response equivalence’, re-

quiring the same preference ordering of pure strategies.

Definition 1.5. Two m× n bimatrix games (A, B) and (Ã, B̃) are better response equivalent,

if for any mixed strategy q ∈ ΣB and any pure strategies x, x′ ∈ S A

uA(x, q) ≥ uA(x′, q)⇔ uÃ(x, q) ≥ uÃ(x′, q),

and for any p ∈ ΣA, y, y′ ∈ S B,

uB(p, y) ≥ uB(p, y′)⇔ uB̃(p, y) ≥ uB̃(p, y′).

Clearly, better response equivalent games are also best response equivalent.

Although, in general, best and better response equivalence are very well suited to

describe dynamically equivalent bimatrix games, for technical convenience we will mostly

be using the following stronger form of equivalence.

Definition 1.6. We say that two m × n bimatrix games (A, B) and (Ã, B̃) are (linearly)

equivalent, (A, B) ∼ (Ã, B̃), if the matrix Ã can be obtained by multiplying A with a positive

constant c > 0 and adding constants c1, . . . , cn ∈ R to the matrix columns, and B̃ can be

obtained from B by multiplication with d > 0 and addition of d1, . . . , dm ∈ R to its rows:

ãi j = c · ai j + c j and b̃i j = d · bi j + di for i = 1, . . . ,m and j = 1, . . . , n.

The following lemma follows by direct computation.

Lemma 1.7. Let (A, B) and (Ã, B̃) be two m × n bimatrix games. If (A, B) and (Ã, B̃) are

linearly equivalent, then they are also better and best response equivalent. In particular,

their best response correspondences coincide, BRA ≡ BRÃ and BRB ≡ BRB̃.

Remark 1.8. Linear equivalence is stronger than better response equivalence, which in

turn is stronger than best response equivalence, and in general, neither of these equivalence

notions coincide2. However, for the class of games that we will mostly be considering in

2This is due to the fact that both best and better response equivalences only take into account payoff com-
parisons for strategy vectors in Σ, whereas linear equivalence enforces a definite relation between the payoff

matrices, irrespective of what vectors are plugged in as strategy vectors.
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this thesis (namely, n×n bimatrix games with unique, completely mixed Nash equilibrium),

all three notions of equivalence can be regarded as equal. An extensive treatment of these

and other game equivalences, as well as their relations to each other, can be found in [70];

see also [71].

The following statement follows immediately from Lemma 1.7 and the definitions

of preference regions, indifference sets, and Nash equilibrium.

Corollary 1.9. If two m×n bimatrix games (A, B) and (Ã, B̃) are (linearly) equivalent, then

all their preference regions and indifference sets coincide, that is,

RÃ
i = RA

i , RB̃
j = RB

j , Z Ã
ii′ = ZA

ii′ , Z B̃
j j′ = ZB

j j′ for i, i′ = 1, . . . ,m and j, j′ = 1, . . . , n.

Moreover, the Nash equilibrium sets of (A, B) and (Ã, B̃) coincide.

Throughout most of this thesis, we will be dealing with games that have a unique,

completely mixed Nash equilibrium. We now provide a lemma which tells us that only n×n

bimatrix games (with equally many strategies for each player) can satisfy this condition.

Lemma 1.10. Let (A, B) be an m × n bimatrix game with an isolated, completely mixed

Nash equilibrium (EA, EB) ∈ int(Σ). Then m = n.

Proof. Assume for a contradiction that m , n. Without loss of generality take m < n; the

case m > n is similar after swapping the roles of the players (replacing (A, B) by (B>, A>)).

We denote 1 = (1, . . . , 1)> ∈ Rn and U = span(1). By Lemma 1.3, AEB ∈ U, and

EB is the only point in ΣB with this property. This implies that V = {v ∈ Rn : Av ∈ U} is

a one-dimensional subspace of Rn with {EB} = V ∩ ΣB. Now, since A ∈ Rm×n with m < n,

we have that dim(ker(A)) ≥ 1, where A is viewed as a linear map from Rn to Rm. We

differentiate two cases.

Case 1: V * ker(A). Then W = V ⊕ker(A) has dimension greater than or equal to 2,

and therefore dim(W ∩ ΣB) ≥ 1, since dim(ΣB) = n − 1 and EB ∈ W ∩ int(ΣB). But Aw ∈ U

for every w ∈ W, which contradicts the fact that EB is the only such point in ΣB.

Case 2: V ⊆ ker(A). In this case, let c , 0 be some constant and let Ã ∈ Rm×n

be the matrix obtained from A by adding c to each of its entries, that is, ãi j = ai j + c for

all i, j. Clearly, (Ã, B) is linearly equivalent to (A, B) and by the previous corollary, both

games have the same sets of Nash equilibria. Therefore, with Ṽ = {v ∈ Rn : Ãv ∈ U} we

have {EB} = Ṽ ∩ ΣB, and it follows that Ṽ = V . On the other hand, ÃEB = c · 1, so that

Ṽ * ker(A), and we can apply case 1 to obtain a contradiction.

This finishes the proof of the lemma. �
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1.2 Fictitious play dynamics

We now proceed to the main goal of this chapter, defining a dynamical system modelling

the repeated or continuous play of a game. For this, we will look at fictitious play, a simple

learning algorithm, which captures the following straightforward intuition:

At each stage of the game, each player determines the (mixed) average strategy

of her opponent’s play up to this time and plays a (pure) best response to it.

The empirical average strategy of a player up to a certain time could be interpreted as the

belief of the opponent about this player’s (internal and unobserved) strategy distribution,

making the assumption that this player follows a stationary strategy distribution throughout

the entire course of play. Fictitious play is defined as the dynamics of these beliefs, which

is a dynamical system on Σ = ΣA × ΣB, the space of mixed strategy profiles.

The algorithm is a so-called myopic learning rule, since players only aim at max-

imising next-round payoff based on the play history, and do not attempt to make any further

strategic considerations to influence their opponent’s future behaviour. It is rather naive in

that the assumption of stationary strategy distributions is not realistic for even just moder-

ately adaptive opponents. However, as we will see in Chapter 3, its performance in terms

of time-average payoff is not necessarily worse than, say, constantly playing Nash equi-

librium. Moreover, it turns out that fictitious play converges to the same limit sets as some

much more sophisticated learning dynamics, which provides further motivation to the study

of this simple algorithm.

In 1951, Brown introduced both a discrete- and continuous-time version of the al-

gorithm [22]; see also the unpublished report [21]. The discrete-time version was initially

more popular, intended to be an algorithm for numerical approximation of Nash equilib-

rium in zero-sum games, which was a computational challenge at the time. This motivation

was justified by the earliest work on discrete-time fictitious play in 1951 by Robinson [82],

showing that indeed the process converges to Nash equilibrium in zero-sum games.

Our focus in this thesis will be on continuous-time fictitious play, but we begin by

defining the discrete-time process, as from a historical and intuitive point of view it precedes

the continuous-time version.

1.2.1 Discrete-time fictitious play

Let (A, B) be an m × n bimatrix games with strategy sets S A and S B, played repeatedly at

times k ∈ N0. Let (xk, yk) ∈ S A × S B denote the (pure) strategies played by the players

at time k ∈ N, with some (mixed) initial condition (x0, y0) ∈ Σ. For k ∈ N, denote the
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empirical average play through time k − 1 by

pk B
1
k

k−1∑
i=0

xi ∈ ΣA and qk B
1
k

k−1∑
i=0

yi ∈ ΣB.

Then the fictitious play rule requires that

xk ∈ BRA(qk) ∩ S A and yk ∈ BRB(pk) ∩ S B (1.1)

for all times k ∈ N.

Remark 1.11. Recall that both sets BRA(qk) and BRB(pk) each contain at least one pure

strategy. Here we do not specify any so-called ‘tie-breaking rule’, that is, a choice of pure

strategy from BRA(qk) and BRB(pk) in (1.1), whenever one of these sets is not a singleton.

All of the results to follow hold independently of the choice of such tie-breaking rule.

The pk and qk are the beliefs of the players at any time k ∈ N about the strategy

distribution of their respective opponent. We calculate

pk+1 =
1

k + 1

k∑
i=0

xi

=
1

k + 1
xk +

k
k + 1

1
k

k−1∑
i=0

xi

=
1

k + 1
xk +

k
k + 1

pk

∈
1

k + 1
BRA(qk) +

k
k + 1

pk,

and similarly

qk+1 ∈
1

k + 1
BRB(pk) +

k
k + 1

qk.

We get the following definition.

Definition 1.12. For a bimatrix game (A, B) with mixed strategy space Σ, discrete-time

fictitious play is the process (pk, qk) ∈ Σ, k ≥ 1, given by the initial condition (p1, q1) ∈ Σ

and for k ≥ 1,

pk+1 ∈
1

k + 1
(BRA(qk) + k · pk), qk+1 ∈

1
k + 1

(BRB(pk) + k · qk), (DFP)

where some tie-breaking rule for BRA and BRB is applied whenever these are multi-valued.

Remark 1.13. (1) Geometrically, discrete-time fictitious play follows a very simple in-

tuition. When the players have beliefs (pk, qk) ∈ Ri j ⊂ Σ, that is, their best responses
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to each other’s empirical average strategies are i and j, respectively, then pk+1 lies

on the line segment between pk and ei ∈ ΣA, and qk+1 on the line segment between

qk and e j ∈ ΣB. That is, both players’ beliefs pk and qk always move towards their

currently preferred pure strategy, with step size decreasing with time k.

(2) Note that

pk+1 − pk ∈
1

k + 1
(BRA(qk) − pk), qk+1 − qk ∈

1
k + 1

(BRA(pk) − qk), (1.2)

so that ‖pk+1 − pk‖ and ‖qk+1 − qk‖ are bounded by
√

2/(k + 1). In other words, the

step size of fictitious play decreases like 1/k, reflecting the intuitive fact that in this

learning dynamics, new incoming data about the opponent has decreasing influence

as k grows, since it is being compared to an increasingly long play history, and no

discounting of the past is applied in this dynamics.

(3) As Berger points out in [12], Brown’s original algorithm differs from what we (and

most other authors) call fictitious play in a subtle yet significant detail: in his ver-

sion of the algorithm, the beliefs pk and qk of the players are updated alternatingly

instead of simultaneously, which allows for certain convergence proofs to be carried

out rather easily.

1.2.2 Continuous-time fictitious play

Instead of considering a game being played repeatedly, we can look at a continuous-time

process. Continuous-time fictitious play is a dynamical system in which both players are

assumed to continuously play a given bimatrix game by playing a best response to the

average of their respective opponent’s past play at each time t > 0. In analogy to the

discrete-time case, we give the following definition (see, for example, Hofbauer [48]).

Definition 1.14. For a bimatrix game (A, B) with mixed strategy space Σ, continuous-time

fictitious play is the process (p(t), q(t)) ∈ Σ, t ≥ t0 > 0, given by the differential inclusion

ṗ(t) ∈
1
t

(BRA(q(t)) − p(t)), q̇(t) ∈
1
t

(BRA(p(t)) − q(t)), (FP)

with some initial condition (p(t0), q(t0)) = (p0, q0) ∈ Σ.

Remark 1.15. (1) Note that (FP) is a differential inclusion. Uniqueness of solutions can-

not generally be guaranteed, but the fact that BRA and BRB are upper semi-continuous

correspondences with closed and convex values (faces of ΣA and ΣB) implies by gen-

eral theory that solutions exist for all initial conditions (see Aubin and Cellina [4,
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Chapter 4, Section 2, Theorem 1]). Later on, we are going to exploit the fact that

these correspondences are single-valued except on a finite number of hyperplanes

(the indifference planes of the players) to deduce that in the games we consider, so-

lutions are indeed unique.

(2) It is clear from the definition that Nash equilibria are precisely the equilibria of ficti-

tious play dynamics (FP). In particular, if an orbit of (FP) converges to a point, this

point is necessarily a Nash equilibrium.

(3) As in the discrete-time case, the fact that BRA and BRB are piecewise constant on the

convex sets RB
j ⊆ ΣA and RA

i ⊆ ΣB respectively leads to a simple geometric intuition

for the (local) dynamics of (FP). Orbits are locally straight line segments heading

for vertices of Σ, which only change direction upon hitting an indifference set, or

equivalently, passing into a different block Ri j. See Figures 1.4 and 1.2 for examples

in 2 × 2 and 3 × 3 games.

(4) Definition 1.14 can be obtained (informally) from discrete-time fictitious play by

noting that in the difference inclusion (1.2) step sizes go to zero as n→ ∞ (see [48]).

An alternative, equivalent definition (see Harris [43]) is somewhat more constructive

and we introduce it here since its terminology will help to give a shorter proof of a

result in Section 3.1 of Chapter 3.

Mimicking notation from the discrete-time case, we denote by x(t) and y(t) the strate-

gies played by the two players at time t ≥ 0, where x : [0,∞) → ΣA and y : [0,∞) →

ΣB are assumed to be measurable functions. We write the average (empirical) past

play of the respective players from time 0 through t as

p(t) B
1
t

∫ t

0
x(s) ds and q(t) B

1
t

∫ t

0
y(s) ds.

Then, analogously to (1.1), continuous-time fictitious play is given by the rule ex-

pressed in the following integral inclusions:

x(t) ∈ BRA(q(t)), y(t) ∈ BRB(p(t)) for t ≥ 1

and (x(t), y(t)) ∈ Σ arbitrary for 0 ≤ t < 1. Note that with an appropriate tie-breaking

rule, x(t) and y(t) can be chosen to be pure strategies for any time t ≥ 1, since BRA(q)

and BRB(p) each contain at least one pure strategy for any (p, q) ∈ Σ.

Defined this way, (p(t), q(t)), t ≥ 1, is a solution of the differential inclusion (FP) with

t0 = 1 and initial condition p(1) =
∫ 1

0 x(s) ds and q(1) =
∫ 1

0 y(s) ds.
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Figure 1.2: A fictitious play orbit in a 3 × 3 game with unique, completely mixed Nash
equilibrium, similar to Shapley’s Rock-Paper-Scissor-like game (1.5) or (1.7). The initial
condition is (p0, q0) ∈ ΣA×ΣB. Note that the players’ trajectories are piecewise straight line
segments. Player A changes direction whenever player B crosses one of her indifference
lines, and vice versa. These changes of direction are marked as the points (pi, qi), indicating
that (p(t), q(t)) = (pi, qi) for times t = ti, i = 0, 1, 2, . . ..

An important observation is that although (FP) is formally time-dependent, a simple

time-reparametrisation t = es turns it into an autonomous system. That is, the only time de-

pendence in fictitious play dynamics is the slowing down of the motion as time progresses,

but not the actual shape of the trajectories. Thinking of fictitious play as an autonomous

system will sometimes simplify certain arguments, so we give a formal definition. This

system is sometimes referred to as ‘best response dynamics’, it has first been considered by

Gilboa and Matsui [37] (see also Matsui [61], or for a wider overview, Hofbauer [48] and

Hofbauer and Sorin [52]).

Definition 1.16. For a bimatrix game (A, B) with mixed strategy space Σ, best response

dynamics is the process (p(t), q(t)) ∈ Σ, t ≥ 0, given by the differential inclusion

ṗ(t) ∈ BRA(q(t)) − p(t), q̇(t) ∈ BRA(p(t)) − q(t), (BR)

with some initial condition (p(0), q(0)) = (p, q) ∈ Σ.

Remark 1.17. Due to its motivation as a computational device, discrete-time fictitious play

has been preferred and continuous-time fictitious play (also introduced by Brown [21]) was

almost forgotten until it reappeared in 1971 in a paper by Rosenmüller [83]. However, the

issue of ‘overshooting’ arising in discrete-time fictitious play makes many analytic proofs

much easier for the continuous-time dynamics. Consequently, most modern literature deals

with the continuous-time case, sometimes deducing certain statements for the discrete-time

case from analogous continuous-time results via approximation techniques. See also the
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paragraphs following Theorem 1.40.

For the rest of this and the next two chapters, we will be mainly concerned with

the dynamics of (FP) and (BR). We now proceed to properties of the flow defined by

these dynamical systems, before presenting classical results about fictitious play and best

response dynamics in the subsequent sections of this chapter.

1.2.3 Uniqueness of the fictitious play flow

As discussed in Remark 1.15(1), the differential inclusion (FP) has solutions for any initial

conditions (p0, q0) ∈ Σ. Uniqueness and continuity of the flow induced by this system turn

out to be less certain, and in fact only hold for generic (but not for all) bimatrix games.

Clearly, in the interior of each of the convex blocks Ri j ⊆ Σ, solutions of (FP)

are (locally) unique and continuous (and, in fact, locally consist of straight line segments).

Hence the problem only arises when these solution curves meet any of the indifference

sets ZA =
⋃

i,i′ ZA
ii′ or ZB =

⋃
j, j′ ZB

j j′ . On these sets, the right-hand sides of (FP) are

multi-valued, giving rise to potential non-uniqueness of solutions. To avoid this, a possible

requirement is that the game is such that all of ZA
ii′ and ZB

j j′ are codimension-one planes,

and that the flow crosses these transversally; this would guarantee that solutions leave such

sets instantaneously and cannot get trapped inside sets with non-unique flow direction. The

following proposition formalises this intuition.

Proposition 1.18 (Sparrow et al. [90, Proposition 2.1]). Let (A, B) be an m × n bimatrix

game. Denote Z∗ = ZB × ZA the set where each of the players is indifferent between at

least two strategies. Assume that for all (p, q) ∈ Σ \ Z∗, if p ∈ ZB and q < ZA so that, say,

BRA(q) = ek, then ek is not parallel to the plane ZB ⊂ ΣA at the point p, and similarly for

the roles of p and q reversed. Then (FP) defines a continuous flow on Σ \ Z∗.

Using that Z∗ is the finite union of codimension-two planes, one can immediately

deduce the following statement.

Corollary 1.19 (Sparrow et al. [90, Corollary 2.1]). Under the hypotheses of Proposi-

tion 1.18, there exists a set X ⊆ Σ which is open and dense in Σ and has full Lebesgue

measure, such that for all (p0, q0) ∈ X, the solution of (FP) with initial condition (p0, q0) is

unique and continuous for all times t ≥ 1.

Finally, a detailed analysis of the phenomenon of non-uniqueness on the ‘bad’ set

Z∗ allows an even stronger statement.

Proposition 1.20 (Sparrow et al. [90, Proposition 2.2]). Assume the bimatrix game (A, B)

satisfies the hypotheses of Proposition 1.18, and additionally assume that A and B have
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maximal rank. Then the flow on the interior of the sets Ri j has a unique continuous extension

everywhere (on Σ), except possibly to points in the subset of Z∗ where one of the players is

indifferent between at least three of her strategies (and the other between at least two). This

remaining set has codimension three.

For zero-sum games (see Definition 1.24) and under suitable non-degeneracy con-

ditions, a unique and continuous extension of the fictitious play flow to an even bigger set

can be proved. In [92], van Strien showed that the vector field defined by (FP) in the case

of a zero-sum bimatrix game (M,−M) can be viewed as a particular case of a more gen-

eral family of Hamiltonian vector fields. Among other things, his results imply conditions

for (FP) to define a unique and continuous flow on all of Σ \ {(EA, EB)} in a zero-sum game.

We have adjusted the formulation of the following proposition by taking into account our

Lemma 1.10 (so that by assuming a unique, completely mixed Nash equilibrium, only n×n

games need to be considered).

Proposition 1.21 (van Strien [92]). Let M be the payoff matrix of the first player in an n×n

zero-sum game (M,−M) with unique, completely mixed Nash equilibrium E.

Let M∗ denote some (n− 1)× n or n× (n− 1) matrix obtained by removing one row

or column from M and subtracting it from each of the other rows or columns. Assume that

for every such matrix M∗ and every r ≥ 1, each r × r minor3 of M∗ is non-zero, and for

every r ≥ 2, each r × r minor of M is non-zero. Then (FP) defines a unique continuous flow

on Σ \ {E}.

Remark 1.22. Conditions such as the hypotheses of Propositions 1.18 or 1.21 can be found

in the literature in various forms. They are usually transversality or non-degeneracy con-

ditions on the entries of the matrices A and B, and hold for generic bimatrices (open and

dense set of bimatrices, whose complement, as a subset of R2mn, has Lebesgue measure

zero). For several older examples, see [80, 83, 88].

1.2.4 Fictitious play in 2 × 2 games

The case of 2 × 2 bimatrix games (A, B) forms the simplest possible ‘building block’ of

fictitious play dynamics. It has been among the earliest results in this field, that in any

2 × 2 bimatrix game, all solutions of (FP) (and hence also of (BR)) converge to a Nash

equilibrium point. A first proof of this has been given by Miyasawa [64], but a later proof

by Metrick and Polak [62] is more geometric and conceptual, and we will briefly sketch its

idea here, as it reveals the entire geometric structure of fictitious play in 2 × 2 games.

3An r × r minor of an m × n matrix M with r ≤ min{m, n} is the determinant of the r × r matrix obtained by
removing m − r rows and n − r columns from M.

19



Theorem 1.23 (Miyasawa [64], Metrick and Polak [62]). For any 2 × 2 bimatrix game

(A, B), any orbit {(p(t), q(t)), t ≥ t0} of (FP) with initial conditions (p(t0), q(t0)) = (p0, q0) ∈

Σ for some t0 ≥ 0 converges to a Nash equilibrium (p∗, q∗) ∈ Σ as t → ∞.

Sketch of proof. The basic idea is that there are only a few combinatorially distinct types

of 2 × 2 games. Each of ΣA and ΣB can be simply viewed as a line segment or closed

interval [0, 1] with 0 corresponding to the first and 1 to the second of the respective player’s

strategies. Then in these coordinates, Σ = ΣA × ΣB is just the unit square [0, 1] × [0, 1].

A simple calculation shows that there is an a ∈ R, such that 0 ∈ BRA(y) for y ≤ a and

1 ∈ BRA(y) for y ≥ a, or vice versa. Note however, that a may not lie in [0, 1], in which case

one of RA
0 , RA

1 might be empty, while the other one is the entire ΣB. Similarly, ΣA consists of

two closed intervals [0, b] = RB
0 , [b, 1] = RB

1 , or vice versa (one of which might be empty or

a singleton {0} or {1}). It follows that Σ consists of at most four rectangles Ri j, i, j ∈ {0, 1}, on

each of which orbits of (FP) are straight line segments heading towards one of the vertices

(i, j) ∈ Σ, see Figure 1.3. Hence, up to swapping strategies and players, there are only a few

possible combinatorial types of 2× 2 games. Most of these (Figure 1.3(a,b,d)) trivially give

rise to convergent fictitious play dynamics, converging either to one of the vertices (i, j) or

the interior point (a, b).

The only slightly more subtle case is when combinatorially, fictitious play leads to

a ‘spiralling’ motion circling the point (a, b) (Figures 1.3(c) and 1.4). Convergence to (a, b)

in this case can be proven by direct computation, showing that the motion has to be inward

spiralling for geometric reasons. Alternatively and more conceptually, it can be shown that

any such game is linearly equivalent to a zero-sum game (see Definitions 1.6 and 1.24), and

then apply Theorem 1.27 from the next section. �

1.2.5 Convergence of fictitious play

The question of whether or not fictitious play dynamics converges has been among the most

important and most studied questions in its investigation. In this section we present some

of the classical results on classes of games for which convergence can be guaranteed.

We begin with the class of games that motivated fictitious play dynamics in the

first place, the zero-sum games. Classically, a bimatrix game (A, B) is called zero-sum, if

A + B = 0, that is, if the payoff to the first player is precisely the negative of the payoff

to the second player, independently of the played strategy profile. As noted above, from a

dynamical point of view, linearly equivalent games are not distinguishable, so we make the

following definition.

Definition 1.24. An m×n bimatrix game (A, B) is zero-sum, if there exists a linearly equiv-

alent m × n bimatrix game (Ã, B̃) ∼ (A, B) such that Ã + B̃ = 0.
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(a)

(c) (d)

(b)

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 1.3: The different types of 2 × 2 bimatrix games. The spaces of mixed strategies ΣA

and ΣB are each represented by a line segment [0, 1]. The space Σ = ΣA×ΣB consists of one,
two, or four regions, on each of which all fictitious play trajectories run towards a single
target (one of the vertices of Σ), indicated by arrows. In (a) and (b), all trajectories converge
to the unique (pure) Nash equilibrium. The game in (c) is equivalent to a zero-sum game;
trajectories spiral towards the unique, completely mixed Nash equilibrium. In (d), there are
two pure (stable) and one completely mixed (saddle) Nash equilibrium.

The very first convergence result for discrete-time fictitious play (DFP) was proved

in 1951 by Robinson4.

Theorem 1.25 (Robinson [82]). For any zero-sum bimatrix game, any orbit {(pk, qk), k ≥ 1}

of discrete-time fictitious play (DFP) converges to the set of Nash equilibria as k → ∞.

The original statement of the theorem actually states that the payoffs of the players

converge to the Nash equilibrium payoffs (the minmax payoff of the game), and this is only

shown for bimatrix games (A, B) with A + B = 0, but the stronger statement of the above

theorem can be deduced from that.

For continuous-time fictitious play, we use the following terminology.

Definition 1.26. A bimatrix game is said to have the fictitious play property, if every solu-

tion of (FP) (and hence (BR)) in this game converges to the set of Nash equilibria.

4In fact, fictitious play is sometimes called the Brown-Robinson process, due to its introduction by
Brown [21, 22] and the first convergence result by Robinson [82].
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Σ = ΣA × ΣB

Figure 1.4: A fictitious play orbit in a 2 × 2 game with unique, completely mixed Nash
equilibrium (the same type as in Figure 1.3(c)). Any orbit in this system spirals towards the
equilibrium.

Convergence of continuous-time fictitious play in zero-sum games is actually easier

to prove than in the discrete-time case, and we provide a sketch proof of the result. The

argument is based on an explicitly constructed Lyapunov function for the fictitious play

flow. It seems to go back to Brown and Robinson, just as the discrete-time case, but full

formal proofs seem to have appeared in the literature only later, see, for example, Hof-

bauer [48, 52].

Theorem 1.27. Every zero-sum game has the fictitious play property.

Sketch of proof. We only discuss the case which is of greatest importance to us, where

(A, B) is a game with a unique, completely mixed Nash equilibrium (EA, EB).

Without loss of generality, assume A + B = 0; convergence in this case implies

convergence for all linearly equivalent games, since the dynamics and the Nash equilibria

remain unchanged under linear equivalence. The key to a simple proof of this theorem is

the following important function on Σ:

H(p, q) B BRA(q)Aq + pBBRB(p) = Ā(q) + B̄(p), (p, q) ∈ Σ. (1.3)

Since A = −B, we get that

Ā(q) = BRA(q)Aq ≥ pAq = −pBq ≥ −pBBRB(p) = −B̄(q), (1.4)

so that H(p, q) ≥ 0 for all (p, q) ∈ Σ. By Lemma 1.3, equality in (1.4) holds if and only

if (p, q) = (EA, EB). Additionally, H : Σ → R≥0 is continuous on Σ and affine on each of

the convex blocks Ri j. It follows that H is a function expressing a notion of distance to

(EA, EB), with level sets topological spheres, which are made up of polytopes.

We will now show that H is strictly decreasing along non-equilibrium solutions
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(p(t), q(t)) of (BR) (and hence (FP)). We skip certain technicalities involving almost-

everywhere differentiability of fictitious play solution curves (see [43, 48, 52]), as well

as the use of the so-called envelope theorem (see, for example, [91]) and present only the

main idea of the calculation. Since BRA(q) and BRB(p) are locally constant (constant on

each of the regions Ri j), by (BR) we get that

d
dt

H(p, q) =
d
dt

(BRA(q)Aq − pABRB(p))

= BRA(q)Aq̇ − ṗABRB(p)

= BRA(q)A(BRB(p) − q) − (BRA(q) − p)ABRB(p)

= −BRA(q)Aq + pABRB(p) = −H(p, q) ≤ 0,

almost everywhere along a trajectory of (BR). Hence Ḣ = −H, and H(p(t), q(t)) = c ·e−t for

some c > 0, so that H is a Lyapunov function for (BR) and trajectories of the best response

dynamics converge to (EA, EB) like e−t. The same calculation for (FP) gives Ḣ = −H/t and

H(p(t), q(t)) = c/t, so that fictitious play trajectories converge to (EA, EB) like 1/t. �

Remark 1.28. In fact, the proof of Theorem 1.27 shows that if the unique Nash equilibrium

of a zero-sum game is a single isolated point (EA, EB) ∈ int(Σ) (that is, completely mixed),

then it is an asymptotically stable fixed point of (FP) and (BR).

The following partially converse conjecture by Hofbauer remains open to this day.

Conjecture 1.29 (Hofbauer [48]). A bimatrix game with a unique Nash equilibrium point

in int(Σ) that is stable under the dynamics of (FP) (and hence (BR)) must be a zero-sum

game.

Another important question, both for practical computational reasons and from a

theoretical point of view, is about the convergence rate of fictitious play dynamics in zero-

sum games. As the proof of Theorem 1.27 shows, non-equilibrium solutions of (FP) con-

verge to Nash equilibrium like 1/t, and accordingly, solutions of (BR) converge like e−t

(see also [43]).

However, the same question for discrete-time fictitious play is more subtle. It is easy

to see that a solution (pk, qk) of (DFP) in a zero-sum game converges to Nash equilibrium

fastest, if it follows precisely a trajectory of (FP), and in this case the convergence rate

is 1/k. However, generically the phenomenon of ‘overshooting’ occurs, so that a solution

of (DFP) ‘falls behind’ the corresponding continuous-time trajectory. To the best of the

author’s knowledge, the following result from 1958 by Shapiro is the strongest statement

available to date.
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Theorem 1.30 (Shapiro [86]). Let (A, B) be an m × n zero-sum bimatrix game. Then solu-

tions (pk, qk) of (DFP) converge to Nash equilibrium at a rate O(k−1/(m+n−2)).

It is known that Shapiro’s estimate is sharp for 2 × 2 games, where convergence

typically takes place at a rate k−1/2, see [38]. On the other hand, its sharpness has not been

demonstrated in games of higher dimension, and it is conjectured that the rate O(k−1/2)

is universal (independent of the dimension m × n). The conjecture seems to go back to

Karlin [53] (see also [43]).

Conjecture 1.31. For any zero-sum bimatrix game (A, B), solutions (pk, qk) of discrete-time

fictitious play (DFP) converge to Nash equilibrium (uniformly) at a rate O(k−1/2).

At the time of submission of this thesis, the author is collaborating with Sebastian

van Strien on a proof of this conjecture.

While zero-sum games are the most notorious class of games possessing the ficti-

tious play property, there are several other classes for which convergence to Nash equilib-

rium is guaranteed: 2 × n games, ‘weighted potential games’, ‘quasi-supermodular’ games

of dimension 3 × n and 4 × 4, ‘quasi-supermodular’ games with ‘diminishing returns’, and

several others. We only state some of the results without giving proofs. To avoid certain

degenerate cases, we will often make the assumption of non-degenerate games, according

to the following definition.

Definition 1.32. An m×n bimatrix game (A, B) is called non-degenerate, if there is a unique

best response to every pure strategy of either player. Equivalently, (A, B) is non-degenerate

if the entries of A and B satisfy ai j , ai′ j and bi j , bi j′ for all 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n

with i , i′ and j , j′.

Theorem 1.33 (Berger [11]). Any non-degenerate 2 × n bimatrix game has the fictitious

play property.

Remark 1.34. For historical reasons it should be mentioned that for 2×3 games, this result

has been proved earlier by Monderer and Sela [66, 85].

Berger’s proof of Theorem 1.33 is rather geometrical: essentially, he shows that

the formally n-dimensional fictitious play dynamics of a non-degenerate 2 × n game can

be reduced to a two-dimensional system, geometrically very much like a 2 × 2 game, and

the only possibly non-trivial behaviour is an inward spiralling motion which necessarily

converges to Nash equilibrium.

The following classes of games, whose definition for the first time involves an or-

dering of the players’ strategies, are meaningful in certain economic contexts.
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Definition 1.35. An m × n bimatrix game (A, B) is supermodular, if for i < i′ and j < j′,

ai′ j′ − ai j′ > ai′ j − ai j and bi′ j′ − bi′ j > bi j′ − bi j.

It is quasi-supermodular, if for i < i′ and j < j′,

ai′ j > ai j ⇒ ai′ j′ > ai j′ and bi j′ > bi j ⇒ bi′ j′ > bi′ j.

It has diminishing returns, if

ai+1, j − ai, j < ai, j − ai−1, j for all i = 2, . . . ,m − 1 and all j,

bi, j+1 − bi, j < bi, j − bi, j−1 for all i and all j = 2, . . . , n − 1.

Supermodular games are also known as games with ‘strategic complementarities’,

and quasi-supermodular games as games with ‘ordinal complementarities’. The following

results have been proved in several weaker forms previously, we only state their most recent

and strongest forms.

Theorem 1.36 (Berger [13, 14]). Every non-degenerate quasi-supermodular game with

either diminishing returns, or dimension 3 × n or 4 × 4, has the fictitious play property.

Theorem 1.37 (Hahn [41]). Every supermodular 3×3 game has the fictitious play property.

The fictitious play property for supermodular games of arbitrary dimension is an

open question [15]:

Conjecture 1.38. Every supermodular game has the fictitious play property.

The last class of games with the fictitious play property that we are presenting are

the ‘weighted potential games’. These games generalise the so-called ‘identical interest

games’: games in which all players have the same payoff function, so that their incentives

are entirely aimed at cooperation and coordination. Identical interest games are comple-

mentary to zero-sum games, which can be seen as games of pure conflict, where all in-

centives for the players are entirely opposed to each other. The fictitious play property for

identical interest games has been proved by Monderer and Shapley [67].

In a weighted potential game, payoffs are not identical, but payoff differences ex-

pressing the players’ incentives are assumed to have a fixed positive ratio between players.

Definition 1.39. An m×n bimatrix game (A, B) is a weighted potential game, if there exists

a matrix P = (pi j) ∈ Rm×n and positive weights w1,w2 > 0 such that for all i, i′, j, j′,

ai j − ai′ j = w1(pi j − pi′ j) and bi j − bi j′ = w2(pi j − pi j′).
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Theorem 1.40 (Monderer and Shapley [68]). Every weighted potential bimatrix game has

the fictitious play property.

Most of the above convergence results hold for discrete-time fictitious play as well

as for continuous-time fictitious play. For example, analogously to Theorem 1.33, discrete-

time fictitious play converges in any non-degenerate 2 × n game [11]. One of the available

tools to transfer such results from continuous to discrete time is the following theorem

due to Hofbauer. For more general theory on discrete-time processes related to differential

inclusions and applications to dynamics in game theory, see Benaı̈m et al. [9, 10].

Theorem 1.41 (Hofbauer [48]). For any bimatrix game, the set of limit points for any

solution of (DFP) is invariant for the dynamics (FP) or (BR). Hence the global attractor of

these continuous-time processes contains the limit points of the discrete-time process.

In general, the occurrence of ‘overshooting’ in discrete-time fictitious play makes

it easier to prove convergence (and many other properties) for the continuous-time version,

and indeed most of the more recent works on fictitious play focus exclusively on the latter.

Although its convergence to Nash equilibrium in certain games was one of the driv-

ing forces and main motivation for fictitious play, it turned out quite early that convergence

need not hold for all types of games.

The first example of a bimatrix game without the fictitious play property was con-

structed in 1964 by Shapley [87]. His 3 × 3 example can be seen as a version of the well-

known ‘Rock-Paper-Scissors’ game:

A =


1 0 0

0 1 0

0 0 1

 , B =


0 1 0

0 0 1

1 0 0

 . (1.5)

This game has a unique Nash equilibrium (EA, EB) ∈ int(Σ), with EA = (EB)> = ( 1
3 ,

1
3 ,

1
3 ).

Non-equilibrium trajectories of (FP) converge to a stable periodic orbit which can be in-

terpreted as the two players trying to ‘catch up’ with their respective opponent’s currently

prevailing strategy. For instance, if one player empirically plays predominantly ‘rock’, the

other player eventually switches to ‘paper’, which in turn causes the first player eventually

to switch to ‘scissors’, and so on, until the pattern repeats after six such switches. The

periodic orbit is a hexagon in Σ, which projects to a triangle in each of ΣA and ΣB. See

Figure 1.2 for a similar orbit.

Remark 1.42. This type of periodic orbit is indeed typical for learning dynamics in bi-

matrix games; following this first example, such orbits are known as Shapley polygons,

see [36].
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1.2.6 Fictitious play as a Hamiltonian system

In this section, we give a somewhat different perspective on the dynamics of (FP) in the

case of n × n zero-sum games with a unique, completely mixed Nash equilibrium. We

briefly sketch how the fictitious play flow in this case gives rise to a Hamiltonian flow on

S 2n−3, which will be important for our combinatorial investigations in Chapter 2, as well

as motivate much of the work presented in Chapters 4 and 5. Fictitious play of zero-sum

games has been studied extensively in the Hamiltonian context in [92]; our exposition here

follows closely the introduction of the author’s paper with van Strien [76].

Recall from Theorem 1.27, that every solution of (FP) in an n × n zero-sum game

(A, B) with unique, completely mixed Nash equilibrium (EA, EB) converges to (EA, EB),

and that a Lyapunov function for this is given by H : Σ→ R as in (1.3),

H(p, q) = BRA(q)Aq + pBBRB(p) = max
i

(Mq)i −min
j

(pM) j, (p, q) ∈ Σ,

where we denote M = A = −B. (Alternatively, we can think of H as a function R2n → R

with the same expression as above.)

It was shown in [92] that for an open set of full Lebesgue measure of n× n matrices

M, each level set H−1(r), r > 0, is a topological (2n − 3)-sphere bounding a convex ball,

and H−1(0) = {(EA, EB)} (note that the dimension of Σ = ΣA × ΣB is 2n − 2).

The function H is continuous and piecewise affine, and (∂H/∂q, ∂H/∂p) is piece-

wise constant outside the indifference hyperplanes ZB
ii′ × ΣB and ΣA × ZA

j j′ . On these hyper-

planes, the derivatives can be thought of as multi-valued.

Now, consider the Hamiltonian differential inclusion

dp
dt
∈
∂H
∂q

,
dq
dt
∈ −

∂H
∂p

.

More generally, take the Hamiltonian vector field XH associated to H and the symplectic

2-form ω =
∑

i j ωi jdpi ∧ dq j, where (ωi j) are the (real) coefficients of some constant non-

singular n × n matrix Ω, and the corresponding differential inclusion is(
dp
dt
,

dq
dt

)
∈ XH(p, q). (1.6)

Here XH is defined by requiring that ω(XH ,Y) = dH(Y) for each vector field Y .

For an open set of full Lebesgue measure of n × n matrices M and Ω, the above

differential inclusions have unique solutions for all initial conditions. The corresponding

flow (p, q, t) 7→ ψt(p, q) is continuous and piecewise a translation flow, so that first return

maps to hyperplanes in H−1(r) are piecewise affine maps.
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While the above construction at first glance looks somewhat arbitrary, it turns out

to be closely related to the fictitious play flow in zero-sum games with unique, completely

mixed Nash equilibrium. Namely, let (p, q) ∈ Σ \ {(EA, EB)} and let l(p, q) denote the half-

ray from (EA, EB) through (p, q). It can be shown that l(p, q) ∩ H−1(1) defines a unique

point in the topological (2n − 3)-sphere H−1(1), so that we can define the projection

π : Σ \ {(EA, EB)} → H−1(1), π(p, q) = l(p, q) ∩ H−1(1).

Crucially, the results in [92] imply the following proposition.

Proposition 1.43. Let (A, B) be an n × n zero-sum bimatrix game with unique, completely

mixed Nash equilibrium. Let φt be the flow of the corresponding continuous-time fictitious

play dynamics (FP), and let H : R2n → R be the corresponding Lyapunov function. Then

the projection under π of the flow φt to H−1(1) corresponds to a solution of a Hamiltonian

system (1.6).

The formulation of the proposition is kept somewhat sketchy, for technical details

see [76, 92]. The important conclusion is that solution curves of (FP) are projected to

solution curves of (1.6). In other words, we can think of the Hamiltonian dynamics (1.6)

on H−1(1) as a system induced by the fictitious play flow.

This induced system describes the ‘spherical component’ of the fictitious play dy-

namics, by ‘projecting out’ the converging ‘radial’ motion. The importance of this lies in

the projective nature of the geometry of bimatrix games and their fictitious play dynamics.

The regions Ri j can be seen as (convex) cones with apex (EA, EB), so that the strategies

chosen by the players at the point (p, q) do not depend on the radial component, but only

on π(p, q). Therefore, the entire combinatorial complexity of the fictitious play dynamics is

preserved in the induced system.

On the other hand, this system has certain nice properties and therefore allows to

study the combinatorics of fictitious play dynamics in a sometimes more convenient setting

than the original fictitious play. For instance, while the induced flow is still piecewise a

translation flow, it is additionally volume-preserving (with an appropriately chosen volume

form) and has no stationary points. In Chapter 2 we will exploit some of the advantages of

the induced flow to study the combinatorial and ergodic properties of fictitious play.

In our main example of 3× 3 games, first return maps of the induced flow to certain

sections are continuous area-preserving piecewise affine planar maps, which can sometimes

be visualised and studied more easily than the higher-dimensional flows. In Chapter 4 we

will prove certain recurrence results relevant to such maps of compact planar sets, and in

Chapter 5, we will study a concrete family of maps very similar to these first return maps

of the induced flow.
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1.3 Why fictitious play?

In this last section of the chapter, we would like to explain the motivation behind investigat-

ing fictitious play, beyond its original purpose as a computational tool to approximate Nash

equilibrium in zero-sum games5.

As a dynamical system, continuous-time fictitious play gives rise to a piecewise

linear flow. A closer look at this flow in examples such as Shapley’s Rock-Paper-Scissors

system (1.5) reveals that its dynamics is far from trivial, and in fact can have highly com-

plicated chaotic behaviour, with features that are unusual or even impossible in smooth

dynamical systems.

In [90, 93], Sparrow, van Strien and Harris construct a one-parameter family of

bimatrix games of a similar Rock-Paper-Scissors-like structure:

Aβ =


1 0 β

β 1 0

0 β 1

 , Bβ =


−β 1 0

0 −β 1

1 0 −β

 , β ∈ (0, 1). (1.7)

For β = 0, this corresponds to Shapley’s example (1.5). Their investigation shows that

fictitious play dynamics in these bimatrix games gives rise to a rich variety of different

dynamical behaviours. Here, we summarise their results.

Note first, that (Aβ, Bβ) has a unique Nash equilibrium (EA, EB) ∈ int(Σ) given by

EA = (EB)> = ( 1
3 ,

1
3 ,

1
3 ). By Proposition 1.18 and an analysis of the exceptional set Z∗, the

differential inclusion (FP) defines a unique and continuous flow on all of Σ \ {(EA, EB)}.

If we denote the golden mean by σ B (
√

5 − 1)/2 ≈ 0.618, one can calculate that

(Aβ, Bβ) is (linearly equivalent to) a zero-sum game if and only if β = σ. By Theorem 1.27,

in that case all solutions of (FP) converge to the unique Nash equilibrium (EA, EB). For

β , σ, the situation is more complicated.

Theorem 1.44 (Sparrow et al. [90, Theorem 3.3]). For β ∈ (0, σ), the flow defined by (FP)

has a (locally) attracting periodic orbit, along which the players follow a 6-periodic cycle

of strategy profiles:

(1, 2)→ (2, 2)→ (2, 3)→ (3, 3)→ (3, 1)→ (1, 1)→ (1, 2).

This orbit is a hexagon in Σ, which is a continuous deformation of the one in Shapley’s
5In fact, the value of fictitious play as an algorithm for approximating Nash equilibrium is limited. Its

convergence is relatively slow (see Theorems 1.27, 1.30 and Conjecture 1.31), and even its originator Brown
wrote in [22] that “it may be possible to use this method to get near, and some other method to finish, the
calculation”. Many more sophisticated algorithms with better convergence properties are known. On the other
hand, its simplicity is also a strong argument in favour of fictitious play. Its computational efficiency makes it
a valuable algorithmic tool even today, for example, in the area of artificial intelligence.
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example for β = 0. It shrinks in diameter to 0 and converges to (EA, EB) as β → σ, and it

is not present for β > σ. This orbit is called the Shapley orbit.

For β ∈ (σ, 1), there exists a periodic orbit, called the anti-Shapley orbit6, with the

following cycle of strategy profiles:

(1, 3)→ (1, 2)→ (3, 2)→ (3, 1)→ (2, 1)→ (2, 3)→ (1, 3).

There exists some τ ≈ 0.915 (the root of some expression), such that the anti-Shapley orbit

is of saddle type when β ∈ (σ, τ) and attracting when β ∈ (τ, 1). For β < σ, this orbit does

not exist.

Recall from Section 1.2.3 that Z∗ ⊂ Σ denotes the set of points where each of the

players is indifferent between at least two of her strategies. The flow on this set is not

defined a priori by (FP), but only by continuous extension from the sets Ri j. Moreover,

since both players are indifferent between multiple strategies on Z∗, it cannot be guaranteed

that trajectories move off this set instantaneously (as is the case when only one of the players

is indifferent). So, in principle, orbits can remain within Z∗ for a positive amount of time,

or even be contained within it for all times.

Continuing their analysis, the authors look at the dynamics on and near a certain

two-dimensional topological manifold J ⊂ Z∗ (the ‘jitter set’). This manifold J is the union

of six sets of the form ZB
ii′ × ZA

j j′ and is fully invariant for (FP). The authors show that the

dynamics on and near J gives the most significant contribution to the richness of the entire

system’s behaviour. Since on J the players are undecided between multiple strategies, in its

vicinity rapid switching between strategies can occur, and fictitious play orbits spend long

times near J, as they ‘spiral’ along this set. The following theorem describes some of the

fictitious play orbits on J.

Theorem 1.45 (Sparrow et al. [90, Theorem 3.4]). For β ∈ (0, σ], trajectories on J spiral

towards the Nash equilibrium (EA, EB). For β = σ, the system (on J) undergoes a Hopf-

like bifurcation, and for β ∈ (σ, 1), there is a periodic orbit Γ ⊂ J, to which all orbits on

J (except for the stationary Nash equilibrium orbit) converge. The diameter of Γ shrinks to

0 as β → σ. Unlike in a usual Hopf-bifurcation, the decrease of the diameter is roughly

linear for β − σ > 0 small.

The trajectories on J spiralling in or out of (EA, EB) (for β > σ and β < σ, re-

spectively) do so in finite time, which emphasises the genuine non-uniqueness of the flow at

(EA, EB) for β , 0.

6The name ‘anti-Shapley orbit’ derives from the fact that in the projections to ΣA and ΣB this orbit runs in
the opposite direction (counter-clockwise instead of clockwise) to the Shapley orbit.
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Furthermore, their analysis shows that the periodic orbit Γ on J ‘organises’ nearby

dynamics. It is neither attracting or repelling, nor of saddle type; in [93], the authors call

it ‘jitter type’: nearby orbits can remain close for very long times and jitter towards it

and away from it in a strongly chaotic and random-walk-like fashion. Such orbits near Γ

roughly follow the same sequence of six strategy profiles as Γ, but ‘dither’ around it, which

gives rise to essentially periodic sequences of strategy profiles interspersed with bursts of

‘undecided’ back-and-forth strategy jumping between essential steps.

The following theorem summarises the abundance of periodic and quasi-periodic7

orbits resulting from this. The term essential period refers to the actual underlying period

of a sequence of strategy profiles, after removing the ‘dithering’ moves.

Theorem 1.46 (van Strien and Sparrow [93, Theorem 1.1]). For each β ∈ (0, 1) and each

n ≥ 1, there are infinitely many fictitious play orbits γs, s ∈ N, with periodic strategy profile

sequences of period Ns → ∞ as s→ ∞, but essential period 6n, such that

• for β ∈ (0, σ), these orbits reach (EA, EB) in finite time,

• for β ∈ (σ, 1), these orbits are genuine periodic orbits of (FP).

Remark 1.47. Note that for β ∈ (0, σ), this shows that not all orbits are attracted to the

(locally) attracting Shapley orbit from Theorem 1.44.

Considering the special periodic orbit Γ ⊂ J from Theorem 1.45 and taking some

x ∈ Γ and a section Z through x transversal to Γ, with corresponding first return map F, the

authors show that:

• for each k ∈ N, the map F has a sequence xn ∈ Z of periodic points of period k,

converging to x as n→ ∞;

• F has infinite topological entropy;

• the dynamics acts like a random walk: there are annuli Ai ⊂ Z centred at x and

partitioning a neighbourhood of x (pairwise disjoint and geometrically shrinking to

x), so that for each sequence n(i) ≥ 0 with |n(i + 1)− n(i)| ≤ 1 there exists z ∈ Z, such

that Fi(z) ∈ An(i) for all i ≥ 1.

Especially the last point displays a striking difference to any smooth dynamical

system. It has the following consequence. Denote the flow of (FP) by φt, let ε > 0 and

define the local stable set corresponding to rate τ as

W s,τ
ε B

{
x : dist(φt(x),Γ) ≤ ε ∀t ≥ 0 and lim

t→∞

1
t

log(dist(φt(x),Γ)) = τ

}
.

7We call an orbit of fictitious play quasi-periodic, if the strategy profiles played along this orbit repeat in a
periodic fashion. See Section 2.1.6 for more details.
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Then for each ε > 0, τ > 0 sufficiently small, W s,τ
ε is non-empty in any neighbourhood of

Z. The same holds for the corresponding unstable sets Wu,τ
ε . This is in stark contrast to any

smooth dynamical system, where one has that all orbits converging to a periodic orbit (in

forward or backward time) do so at a fixed exponential rate and form a (stable or unstable)

manifold. Here on the other hand, the stable and unstable sets are highly complicated and

contain orbits of all (sufficiently small) exponential convergence rates.

We finish the discussion with a final remark on the robustness of these results.

Remark 1.48. All the above results are robust to small perturbations of the matrices Aβ and

Bβ, that is, there is some ε > 0, such that all of the above still holds for any bimatrix game

(A, B) with ‖A − Aβ‖ < ε and ‖B − Bβ‖ < ε (see [93, Theorem 1.4]).

The above results are meant to motivate fictitious play from a mathematical point

of view, as a dynamical system with a rather unique set of features. Another interesting

side of fictitious play dynamics is revealed by its induced Hamiltonian flow, presented in

Section 1.2.6. For an n×n zero-sum game with unique, completely mixed Nash equilibrium

(like the game in (1.7) with β = σ), using the Lyapunov function H from (1.3) one can show

that the motion projects to a spherical motion on H−1(1), which is a (topological) (2n − 3)-

sphere. In this case fictitious play is (almost, namely up to time parametrisation) the product

of the radial motion towards (EA, EB) and an induced flow on S 2n−3 (see Proposition 1.43).

This induced flow and a whole class of systems containing it are studied extensively

in [92]. It is a continuous piecewise linear Hamiltonian flow, whose properties largely

shadow the ones described above for the fictitious play flow. It has no stationary points,

meaning that convergence to (EA, EB) in the fictitious play flow never happens along a

well-defined direction, and orbits of (FP) keep spiralling in various ways around (EA, EB)

as they converge to it. It admits certain first return sections, with Poincaré maps that are

continuous, piecewise affine and volume-preserving.

In the particular example (1.7) with β = σ, it was shown that the induced flow on

S 3 has a global first return section D, which is a topological disk made up of four triangles,

with a Poincaré map R of a very special form. This first return map is continuous, piecewise

affine, area-preserving, and extends continuously to the closure of D, by R|∂D = id. (In fact,

the boundary ∂D corresponds to a periodic orbit of the flow.) Model maps of this type are

studied in Chapter 5.

The class of flows arising from fictitious play and its induced flow on S 2n−3 is of

interest as a model for Hamiltonian flows on the level-set of a given function H : R2n → R.

Very little is generally known about such systems, and a possible approach is to study piece-

wise linear versions, as these often allow for much more explicit analytic computations,

even without employing perturbation arguments as are often needed in smooth systems.
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A similar paradigm of approaching general systems by looking at piecewise linear

models can be traced to existing analogies such as circle diffeomorphisms and circle rota-

tions, the quadratic map and the tent map, or the Hénon map and the Lozi map. Exploring

the analogy between dynamics arising from smooth and piecewise affine Hamiltonians, as

well as smooth and piecewise affine area-preserving maps, is perhaps the strongest math-

ematical motivation for studying fictitious play and various systems arising from it, and

forms one of the main motivations for the investigations presented in this thesis.
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Chapter 2

Combinatorics of fictitious play

This chapter is largely based on the publication [76] with Sebastian van Strien. Its focus lies

on the combinatorics of continuous-time fictitious play dynamics, and its ergodic properties.

As we discussed in Section 1.3, in games of dimension 3 × 3 and higher, fictitious

play dynamics can display highly complex behaviour, whereas in dimensions 2 × 2 (or,

more generally, 2 × n), it is almost completely understood and classifies into a few simple

dynamical types, with all its trajectories converging to the set of Nash equilibria (see Sec-

tion 1.2.4 and Theorem 1.33 of the previous chapter). Therefore, in this chapter we focus

our attention on 3× 3 bimatrix games, and moreover we will be mostly dealing with games

that have a unique, completely mixed Nash equilibrium.

In Section 2.1 we introduce a combinatorial (symbolic) description of fictitious

play dynamics, show some of its basic properties, investigate admissible and realisable

sequences of strategy profiles, and prove a classification result about the combinatorics of

3 × 3 zero-sum games. Then, in Section 2.2 we investigate the ergodic properties of ficti-

tious play dynamics in 3 × 3 zero-sum games, by numerically studying certain first return

maps of the fictitious play flow. We finish the chapter by posing a number of open questions

and conjectures relating to both the combinatorial and ergodic properties of fictitious play.

2.1 Combinatorial description of fictitious play

Our first aim in this section is to obtain a combinatorial description of bimatrix games and

an appropriate symbolic representation of their fictitious play dynamics. Next, we explore

the possible combinatorial configurations for the classes of games we are interested in, in

particular for zero-sum games.

For this, we begin by recalling some simple observations on the geometry of an

m×n bimatrix game (A, B) and its implications for the shape of the orbits of continuous-time
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fictitious play dynamics, that is, the solutions of the differential inclusion (FP) (or (BR)).

As discussed in the previous chapter, the first player’s mixed strategy space ΣA can

be divided into n convex regions (polytopes) RB
j = BRB

−1( j), j ∈ {1, . . . , n}, and analogously

ΣB comprises of the regions RA
i = BRA

−1(i), i ∈ {1, . . . ,m}.

Since BRB × BRA is constant on Ri j = RB
j × RA

i , the orbits of (FP) and (BR) are

continuous curves (p(t), q(t)) ∈ Σ = ΣA × ΣB, which consist piecewise of straight line

segments heading for vertices (ek, el) ∈ Σ whenever (p(t), q(t)) ∈ Rkl. The orbits only

change direction when crossing one of a finite number of hyperplanes, the indifference sets

ZB
ii′ ⊂ ΣA and ZA

j j′ ⊂ ΣB, that is, whenever BRA or BRB (or both) become multi-valued. More

precisely, p(t) changes direction whenever q(t) passes from RA
i into RA

i′ for some i , i′, and

q(t) changes direction whenever p(t) crosses from RB
j into RB

j′ , j , j′. See Figure 1.2 for an

example with n = m = 3.

2.1.1 Coding of fictitious play

The partition of Σ into the convex blocks Ri j quite naturally gives rise to a coding of ficti-

tious play. We codify an orbit (p(t), q(t)) by a (finite or infinite, one-sided) itinerary

(i0, j0)→ (i1, j1)→ · · · → (ik, jk)→ · · ·

indicating that there exists a strictly increasing sequence (tk)k∈N, such that (p(t), q(t)) ∈ Rik jk

for tk < t < tk+1, and (ik, jk) , (ik+1, jk+1) for k ≥ 0. In other words, along the orbit

(p(t), q(t)), the players choose the strategy profiles (i0, j0), (i1, j1), . . ., with switches be-

tween strategy profiles occurring at certain discrete times tk, k ∈ N. The following observa-

tion is essentially the ‘improvement principle’ of Monderer and Sela [66].

Lemma 2.1. The itinerary of an orbit of (FP) for a fixed bimatrix game (A, B) can contain

a step (i, j)→ (i′, j′) only if ai′ j ≥ ai j and bi j′ ≥ bi j.

Next observe that, generically, only transitions of the form (i, j) → (i′, j) and

(i, j)→ (i, j′) can occur.

Lemma 2.2. Let (A, B) be a non-degenerate bimatrix game. Then for almost all initial

conditions (p0, q0) ∈ Σ, the components p(t) and q(t) of the corresponding solution of (FP)

never switch directions simultaneously, that is, the itinerary of the orbit (p(t), q(t)) only

contains transitions of the form (i, j)→ (i′, j) and (i, j)→ (i, j′), i , i′, j , j′.

Proof. First, note that if the orbit (p(t), q(t)) undergoes a transition from (i, j) to (i′, j′) with

i , i′ and j , j′, then there exists a t > 0, such that (p(t), q(t)) ∈ ZB
ii′ × ZA

j j′ , that is, the orbit

crosses the set where both players are indifferent between at least two strategies each.
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Now, p ∈ ZB
j j′ ⊂ ΣA if and only if (pB) j = (pB) j′ , that is,

p · (~b j − ~b j′) = 0,

where ~bk denotes the kth column of the matrix B. From this one can see that ZB
j j′ is all of ΣA

if ~b j = ~b j′ , and has at least codimension 1, otherwise. By the non-degeneracy of the game,

bi j , bi j′ for all i and j, j′, so that only the second possibility can occur.

By the same reasoning, ZA
ii′ has at least codimension 1, and it follows that the set

ZB
ii′×ZA

j j′ is of codimension 2 or more. Therefore, the set of initial conditions (p0, q0) whose

fictitious play orbits eventually cross this set has at least codimension 1 in Σ, and hence zero

Lebesgue measure. �

Using the above lemmas together with the non-degeneracy condition introduced in

Definition 1.32 of Chapter 1, we can now make sure that for any (i, j) , (i′, j′) there is only

one possible transition direction between (i, j) and (i′, j′) which is realised by fictitious

play orbits of an open set of initial conditions. Recall that a bimatrix game (A, B) is called

non-degenerate, if ai j , ai′ j and bi j , bi j′ for all i, i′, j, j′ with i , i′ and j , j′; the non-

degenerate bimatrices form an open dense subset of full Lebesgue measure in the space of

m × n bimatrices.

Corollary 2.3. Let (A, B) be a non-degenerate bimatrix game. Then for any (i, j) , (i′, j′),

at most one of the transitions (i, j) → (i′, j′) or (i′, j′) → (i, j) is realised by fictitious play

orbits of an open set of initial conditions.

2.1.2 Transition diagrams

To conveniently represent the collection of possible transitions in a given m × n bimatrix

game (A, B), we can consider a graph (the ‘transition graph’) of m · n vertices (i, j), i ∈

{1, . . . ,m}, j ∈ {1, . . . , n}, with a directed edge from (i, j) to (i′, j′) indicating that there

exists a fictitious play orbit crossing (directly) from Ri j to Ri′ j′ . Here we only consider

those transitions that occur along the orbits of an open set of initial conditions.

Notation 2.4. For a given non-degenerate game (A, B), we write (i, j) ⇒ (i′, j′) to denote

that the step (i, j) → (i′, j′) can occur along fictitious play orbits corresponding to an open

set of initial conditions.

By Corollary 2.3 and Lemma 2.2, this leaves us with transitions of the form (i, j)⇒

(i′, j) and (i, j) ⇒ (i, j′), with at most one transition direction between any two regions Ri j

and Ri′ j′ .

For the case of non-degenerate 3 × 3 bimatrix games, we get a particularly simple

visual representation of the transition graph, expressed in a so-called transition diagram
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1

2

3

1 2 3

Player B

Player A

Figure 2.1: Example transition diagram of a 3 × 3 game. A block in row i and column
j corresponds to the region Ri j, where i and j are the players’ respective best response
strategies in this subset of Σ. The arrows indicate which transitions between regions can
occur along (open sets of) fictitious play trajectories in this game. Note that the left and right
sides of the diagram should be though of as identified, as well as the top and bottom sides.
Note also that the diagram only illustrates admissible itineraries: a formally admissible
sequence of steps through the diagram cannot necessarily be realised by an actual fictitious
play orbit.

as in Figure 2.1. The three rows and three columns of the diagram represent the regions

RA
i , i = 1, 2, 3, and RB

j , j = 1, 2, 3, respectively. The arrows, only horizontal or vertical by

Lemma 2.2, indicate the possible transitions between the regions, which by Corollary 2.3

always have a unique direction. For example, (1, 2) ⇒ (1, 3) for a given bimatrix game if

and only if in the first row of its transition diagram an arrow points from the second into

the third column. Opposite sides of the diagram should be thought of as identified, so that

possible transitions between the first and third rows and columns are indicated by arrows

on the boundary of the diagram.

2.1.3 Realisable diagrams

One may now ask whether a given transition diagram can occur as the transition diagram of

fictitious play dynamics for a bimatrix game (A, B), and how properties of a game relate to

the combinatorial information given by its transition diagram.

A simple first observation is that no row of a transition diagram of a non-degenerate

game can have all its horizontal arrows pointing in the same direction, as this would imply

ai,1 > ai,2 > · · · > ai,n > ai,1
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if the arrows points left, or

ai,1 < ai,2 < · · · < ai,n < ai,1

if they point right. Analogously, no column of such diagram can have all its vertical arrows

pointing in the same direction. More generally, the horizontal arrows in any row of a transi-

tion diagram have to correspond to a particular (strict) ordering of the entries of the matrix

A in the corresponding row, and the vertical arrows in any column have to correspond to a

(strict) ordering of the entries of the matrix B in the corresponding column.

It is not difficult to see that apart from this restriction, any transition diagram can be

realised by appropriate choice of (A, B). However, our interest lies in bimatrix games whose

fictitious play dynamics gives rise to non-trivial behaviour. In particular, the game should

have no ‘irrelevant’ strategies, which are never a best response and hence never chosen by

fictitious play. For this, we introduce the following classical notion from game theory.

Definition 2.5. Let (A, B) be an m × n bimatrix game. A strategy i ∈ {1, . . . ,m} of the first

player is dominated by strategy i′ ∈ {1, . . . ,m}, if

eiAq < ei′Aq

for all q ∈ ΣB. We say that the strategy i is dominated, if there exists such a strategy i′

dominating i. We define a dominated strategy of the second player analogously.

Remark 2.6. In classical game theory, such strategy is known as a ‘strongly dominated

strategy’, as opposed to a ‘weakly dominated strategy’, which only requires eiAq̃ < ei′Aq̃

for a single q̃ ∈ ΣB, and eiAq ≤ ei′Aq for general q ∈ ΣB. For our purposes, the notion of

strongly dominated strategy is sufficient, and we are referring to it simply as ‘dominated’.

Lemma 2.7. The first player’s strategy i is dominated by her strategy i′ if and only if

ai j < ai′ j for all j ∈ {1, . . . , n}. The second player’s strategy j is dominated by her strategy

j′ if and only if bi j < bi j′ for all i ∈ {1, . . . ,m}.

Proof. Clearly, if ai j < ai′ j for all j, then eiAe j = ai j < ai′ j = ei′Ae j. Now every q ∈ ΣB

can be written as q =
∑

j q je j with q j ≥ 0 and
∑

j q j = 1, so that

eiAq =
∑

j

q j · eiAe j <
∑

j

q j · ei′Ae j = ei′Aq.

Conversely, if eiAq < ei′Aq for every q ∈ ΣB, then in particular, ai j = eiAe j < ei′Ae j = ai′ j

for every j ∈ {1, . . . , n}. The proof for the second player is similar. �
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The lemma implies that the first player’s strategy i is dominated by i′ in the game

(A, B) if and only if in the corresponding transition diagram, all (vertical) arrows between

the rows i and i′ point from i to i′. Similarly, the second player’s strategy j is dominated by

j′ if and only if all (horizontal) arrows between the columns j and j′ point from j to j′. See

Figure 2.6(a)-(b).

Lemma 2.8. If a bimatrix game (A, B) has a unique, completely mixed Nash equilibrium,

then neither player has a dominated strategy.

Proof. Suppose that one of the player has a dominated strategy. Without loss of generality

we can assume that the first player’s strategy 1 is dominated, so that RA
1 = ∅. But EB ∈

(
⋂

i RA
i ) ∩ int(ΣB) , whenever EB is an isolated point in ΣB, which is a contradiction. �

Consequently, in our combinatorial investigation of non-degenerate bimatrix games,

transition diagrams of interest will be those that satisfy the following rules:

• no row has all its horizontal arrows pointing in the same direction;

• no column has all its vertical arrows pointing in the same direction;

• not all of the vertical arrows between any two rows point in the same direction;

• not all of the horizontal arrows between any two columns point in the same direction.

2.1.4 Admissible and realisable sequences

It is important to note that the partition of Σ given by {Ri j = RB
j ×RA

i : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

does not have the nice properties of a Markov partition: there is no claim that every itinerary

that can be obtained from the transition diagram of a bimatrix game can actually be realised

by an orbit of the fictitious play dynamics. In fact, even a finite (formally admissible)

sequence (i1, j1) → · · · → (iK , jK) cannot necessarily be realised as (part of) the itinerary

of an actual fictitious play orbit.

Definition 2.9. Let (A, B) be a non-degenerate m×n bimatrix game. We say that a sequence

(i1, j1) → · · · → (iK , jK), K > 1, with ik ∈ {1, . . . ,m} and jk ∈ {1, . . . , n} for 1 ≤ k ≤ K, is

admissible for (A, B), if (ik, jk)⇒ (ik+1, jk+1) for k = 1, . . . ,K − 1.

An admissible sequence (i1, j1) ⇒ · · · ⇒ (iK , jK) is said to be realisable, if there

exists (p0, q0) ∈ Σ, such that the itinerary of a corresponding fictitious play orbit (p(t), q(t))

with initial conditions (p0, q0) has (i1, j1), . . . , (iK , jK) as its first K entries.

Recall that in a bimatrix game with a unique, completely mixed Nash equilibrium

(EA, EB), all the indifference sets ZA
ii′ = RA

i ∩ RA
i′ ⊂ ΣB and ZB

j j′ = RB
j ∩ RB

j′ ⊂ ΣA are

39



codimension-one hyperplanes that meet at EB and EA, respectively. It follows immediately

that every admissible sequence (i1, j1) → (i2, j2) (length K = 2) is realisable. For non-

degenerate 3 × 3 games, we can make the analogous statement for K = 3.

Proposition 2.10. In a non-degenerate 3×3 bimatrix game with a unique, completely mixed

Nash equilibrium, every admissible sequence of length K ≤ 3 is realisable.

Proof. We have already proved the statement for K ≤ 2. For K = 3, let

(i1, j1)→ (i2, j2)→ (i3, j3)

be any admissible sequence, and assume without loss of generality i1 , i2. We consider

two cases.

Case 1: i1 , i2 , i3. It follows that j1 = j2 = j3 and by non-degeneracy and

Corollary 2.3, i1 , i3. So, up to relabelling strategies, we can assume ik = k and jk = 1 for

k = 1, 2, 3, so that the sequence to be realised is

(1, 1)→ (2, 1)→ (3, 1).

Since (A, B) has a unique Nash equilibrium (EA, EB) ∈ int(Σ), every region RB
j ⊂ ΣA

is a convex region with non-empty interior. Let p0 be an interior point of RB
1 . Solutions

(p(t), q(t)) of (FP) satisfy ṗ = BRA(q) − p, therefore in particular, ‖ṗ‖ is bounded and we

can choose T > 0 such that p(t) ∈ RB
1 for 0 ≤ t ≤ T for any such orbit with p(0) = p0.

In ΣB, the admissibility of (1, 1)→ (2, 1)→ (3, 1) implies that e1 ∈ RA
3 (here we use

the fact that there are only three strategies for each player) and that there are rays through e1

that cross both indifference lines ZA
12 and ZA

23 transversally. These two lines meet at EB. We

can choose a ray through e1 crossing ZA
12 and ZA

23 arbitrarily close to EB. In particular, we

can choose a ray r and a point q0 ∈ r ∩ RA
1 such that a solution of q̇ = e1 − q with q(0) = q0

satisfies q1 = q(t1) ∈ r ∩ ZA
12 and q2 = q(t2) ∈ ZA

23 with 0 < t1 < t2 < T .

By construction, the fictitious play orbit with initial conditions (p0, q0) has the de-

sired itinerary, see Figure 2.2.

Case 2: i1 , i2 = i3. Then j1 = j2 , j3 and without loss of generality we can

assume i1 = j1 = j2 = 1, i2 = i3 = j3 = 2, so that the sequence to be realised in this case is

(1, 1)→ (2, 1)→ (2, 2).

See Figure 2.3 for the construction to follow. Pick a point p2 in the interior of the

line segment ZB
12 and q1 in the interior of ZA

12. Let r1 be the ray from e2 ∈ ΣA through p2

and let r2 be the ray from e1 ∈ ΣB through q1. Since RB
1 and RA

2 have non-empty interior,
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Figure 2.2: Orbit with itinerary (1, 1) → (2, 1) → (3, 1) constructed in case 1 of the proof
of Proposition 2.10.
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2
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Figure 2.3: Orbit with itinerary (1, 1) → (2, 1) → (2, 2) constructed in case 2 of the proof
of Proposition 2.10.

r1 ∩ RB
1 and r2 ∩ RA

2 are line segments of positive lengths. One can then choose points

p1 ∈ r1 ∩ int(RB
1 ) and q2 ∈ r2 ∩ int(RA

2 ), such that the solutions of ṗ = e2 − p with p(0) = p1

and q̇ = e2 − q with q(0) = q1 satisfy p(t1) = p2 and q(t1) = q2 for some t1 > 0. Since

p1 ∈ int(RB
1 ), we can now choose some (small) t2 > 0 and points p0 ∈ RB

1 , q0 ∈ RA
1 , such

that the solutions of ṗ = e1 − p with p(0) = p0 and q̇ = e1 − q with q(0) = q0 satisfy

p(t2) = p1 and q(t2) = q1. Analogously, since q2 ∈ int(RA
2 ), we can find t3 > 0 such that the

solution to ṗ = e2 − p with p(0) = p2 and q̇ = e2 − q with q(0) = q2 satisfy p(t) ∈ RB
2 and

q(t) ∈ RA
2 for 0 < t < t3.

We conclude that the itinerary of the fictitious play orbit with initial conditions

(p0, q0) begins with (1, 1)→ (1, 2)→ (2, 2), as desired (see Figure 2.3). �

One is tempted to think that the previous result can be extended to admissible se-

quences of length n ≥ 4. However, as the next result shows, there are indeed admissible
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Figure 2.4: (Proof of Lemma 2.11) Only the projection to ΣA of the orbit to be constructed
is shown. To realise the sequence ( j, l) → ( j,m) → (i,m) → (i, n), the orbit needs to next
go through a point p3 ∈ ZB

mn, which is impossible since [p2, p3] = [p2, ei] ∩ RB
m lies within

the cone with apex EA spanned by ZB
lm and the ray from EA through p2 ∈ RB

m (dashed line).

sequences of length 4 which cannot be realised by an actual fictitious play orbit. More-

over, these 3-step sequences can be shown not to be realisable under entirely combinatorial

conditions on the transition diagram and without any considerations on the finer geometric

structure of a given game. We start with a geometric lemma.

Lemma 2.11. Let (A, B) be a non-degenerate 3×3 bimatrix game with a unique, completely

mixed Nash equilibrium. Let {i, j, k} = {l,m, n} = {1, 2, 3}. Denote by S A
i j the edge of

ΣA connecting the vertices ei and e j and assume that ZB
lm ∩ S A

i j , ∅ in such a way that

( j, l) ⇒ ( j,m) and (i,m) ⇒ (i, l) (that is, such that ei lies in the same half plane as RB
l and

e j in the same half plane as RB
m). Then the sequence

( j, l)→ ( j,m)→ (i,m)→ (i, n)

is not realisable (irrespective of whether it is admissible).

Proof. We only need to check the case that the given sequence is admissible. Assume some

fictitious play orbit (p(t), q(t)) realises the given sequence as the first steps of its itinerary.

Let 0 < t1 be the minimal time such that p1 = p(t1) ∈ ZB
lm, t2 > t1 minimal such that

q(t2) ∈ ZA
i j, and t3 > t2 minimal such that p3 = p(t3) ∈ ZB

mn. Denote the point ZB
lm ∩ S A

i j by z

and p2 = p(t2). Then for t1 ≤ t ≤ t2, p(t) lies on the line segment [p1, e j] and for t2 ≤ t ≤ t3,

on the line segment [p2, ei]. Observe that [p2, p3] = [p2, ei] ∩ RB
m lies in the cone with apex

EA spanned by the two rays from EA through p1 ∈ ZB
lm and p2 ∈ RB

m, respectively. See

Figure 2.4. This cone is contained in RB
m and only intersects RB

n in EA, so that p3 ∈ [p2, ei]

cannot lie on ZB
mn, which is a contradiction. This finishes the proof. �
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Figure 2.5:
(a) The prescribed combinatorial data in Corollary 2.12. Other arrows can be chosen freely.
(b) Proposition 2.13: Only one of the two shown itinerary paths can be realized.

Corollary 2.12. Let (A, B) be a non-degenerate 3 × 3 bimatrix game with a unique, com-

pletely mixed Nash equilibrium. Let {i, j, k} = {l,m, n} = {1, 2, 3}, and let the following

combinatorial data be given (see Figure 2.5(a)):

• ( j, l)⇒ ( j,m) and ( j, n)⇒ ( j,m) (that is, b jm > b jl and b jm > b jn);

• (i,m)⇒ (i, l) and (i,m)⇒ (i, n) (that is, bim < bil and bim < bin);

• ( j,m)⇒ (i,m) (that is, aim > a jm);

• (k, l)⇒ (k, n) (that is, bkn > bkl).

Then the sequence ( j, l)→ ( j,m)→ (i,m)→ (i, n) is not realisable.

Proof. Note that by Lemma 2.8, there are no dominated strategies, and all the combinatorial

restrictions given at the end of Section 2.1.3 apply. Together with the hypotheses, this leaves

a certain number of possible configurations for the transition diagram of (A, B).

It can be checked that each of these gives rise to a geometric configuration (that is,

a configuration of the players’ indifference lines in ΣA and ΣB) satisfying the hypotheses of

Lemma 2.11, which yields the conclusion. �

Proposition 2.13. Let (A, B) be a non-degenerate 3× 3 bimatrix game with a unique, com-

pletely mixed Nash equilibrium. Let {i, j, k} = {l,m, n} = {1, 2, 3}. Then at most one of the

sequences

( j, l)→ ( j,m)→ (i,m)→ (i, n) and ( j, n)→ ( j,m)→ (i,m)→ (i, l)

is realisable (see Figure 2.5(b)).
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Proof. Assume for a contradiction that both sequences are realisable, and in particular, both

are admissible. This implies that the first three combinatorial assumptions of Corollary 2.12

hold. If bkn > bkl, this corollary implies that the first sequence is not realisable. On the other

hand, if bkn < bkl, then after swapping the roles of l and n, the same result implies that the

second sequence is not realisable. Since the game is non-degenerate, bkn , bkl, and the

proof is finished. �

More combinatorial rules such as the above can be deduced for non-degenerate 3×3

games (or particular types of such games), but we restrict ourselves to the few mentioned

above to illustrate the principle. In the next section, we present a somewhat bigger combi-

natorial result of this type. Rather than dealing with single itineraries, it classifies all types

of transition diagram occurring for 3 × 3 zero-sum games.

2.1.5 Combinatorics of zero-sum games

Recall from Definition 1.24 that we call a bimatrix game (A, B) zero-sum, if it is linearly

equivalent (see Definition 1.6) to a game (Ã, B̃) which satisfies Ã + B̃ = 0. This class of

games is special in that it gives rise to a fictitious play flow which necessarily converges to

the set of Nash equilibria (Theorem 1.27), and moreover, conjecturally is the only class of

games with this property when the Nash equilibrium is an isolated point in the interior of

Σ (Conjecture 1.29). Furthermore, as discussed in Section 1.2.6, by projecting the flow of

a 3 × 3 zero-sum game to a level-set of a certain Lyapunov function (1.3), one can obtain a

Hamiltonian ‘induced flow’ on S 3, which is an exciting object of study on it own, as it can

provide insights into more general piecewise affine Hamiltonian flows on the three-sphere

(see Section 1.3).

In this section we classify all 3 × 3 zero-sum games combinatorially, that is, we

provide a list of all the possible transition diagrams that can occur for such games. It turns

out that the zero-sum property imposes strong restrictions on the possible configurations of

the transition diagram, and, up to relabelling strategies and swapping players, leaves only

23 possible transition diagrams.

We start by introducing a few combinatorial notions, where we always assume a

non-degenerate bimatrix game (A, B) to be given.

Definition 2.14. An admissible sequence (i1, j1) → (i2, j2) → · · · → (iK , jK) = (i0, j0),

K > 1, is called alternating cycle, if after reversing the direction of all ‘vertical’ transitions

along the sequence (that is, transitions (ik, jk) → (ik+1, jk+1) with ik , ik+1), it forms a

directed loop in the transition diagram of (A, B). More formally, the sequence is alternating,

if the transition diagram satisfies one of the following:
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(a) (b)

1 2

34 12

34

5 6

(c) (d)

Figure 2.6: (a) Row 2 dominates row 1. (b) Column 2 dominates column 1.
(c),(d) Examples of alternating cycles.

• (ik, jk) ⇒ (ik+1, jk+1) whenever ik , ik+1, (ik+1, jk+1) ⇒ (ik, jk) whenever jk , jk+1;

or

• (ik+1, jk+1)⇒ (ik, jk) whenever ik , ik+1, (ik, jk)⇒ (ik+1, jk+1) whenever jk , jk+1.

Examples of alternating cycles are shown in Figures 2.6(c) and (d).

Definition 2.15. We call (i, j) a sink, if it can be entered but not left by an admissible

sequence (that is, (i′, j) ⇒ (i, j) and (i, j′) ⇒ (i, j) for i′ , i and j′ , j). Conversely, we

call it a source, if it can be left but not entered.

We can now formulate several facts for the transition diagram of a zero-sum game.

Lemma 2.16. Let (A, B) be a non-degenerate zero-sum game. Then its transition diagram

does not have alternating cycles.

Remark 2.17. Without loss of generality we can only consider cycles in which the i- and

j-component change alternatingly, which justifies the notion of alternating cycle. In fact,

in 3 × 3 games this lemma reduces to saying that there are no alternating cycles of the two

kinds depicted in Figures 2.6(c) and (d).

Proof. Assume that A + B = 0 (otherwise choose linearly equivalent matrices such that this

holds and note that this does not change the arrows in the transition diagram). Recall that

(i, j)⇒ (i′, j) if and only if ai′ j > ai j. Further, (i, j)⇒ (i, j′) if and only if bi j′ > bi j, which

in a zero-sum game is equivalent to ai j > ai j′ . It follows that an alternating cycle leads to a

chain of inequalities

ai0 j0 > ai1 j1 > · · · > ain jn = ai0 j0 ,

which is impossible. �

Lemma 2.18. Let (A, B) be a non-degenerate 3×3 zero-sum game with a unique, completely

mixed Nash equilibrium. Then its transition diagram does not have sinks or sources.
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: (Proof of of Lemma 2.18)
(a) General case for a diagram with a source.
(b) Case 1: sink in (2,1) contradicts zero-sum property.
(c) Case 2: alternating cycle contradicts zero-sum property.
(d) Case 3.
(e),(f) Case 3: necessarily following configuration.

Proof. To show that such game has no sinks, we use Theorem 1.27, that is, every orbit of

fictitious play in a zero-sum game converges to the unique Nash equilibrium (EA, EB) ∈

int(Σ). A sink in the transition diagram however would imply that all orbits of (FP) that

start in Ri j for some i, j remain in it for all times. Since within Ri j all orbits are straight

line segments with target point (ei, e j) ∈ ∂Σ, this can only be the case if they converge

along straight line segments toward this point, contradicting the uniqueness of the Nash

equilibrium in int(Σ).

To rule out the existence of sources, suppose for a contradiction that such a zero-

sum game with a source in its transition diagram exists. After possibly permuting rows and

columns and swapping the roles of the two players, we can assume that the source is (2, 2)

and we have the (incomplete) diagram as seen in Figure 2.7(a). Let us now consider all four

possible cases for the vertical arrows in (2, 3):

• Case 1: (2, 3)⇒ (i, 3), i = 1, 2, that is, both arrows pointing out of (2, 3).

Either row 2 dominates row 1 or 3, or (2, 1) is a sink, see Figure 2.7(b). While the

former is impossible by Lemma 2.8, the latter contradicts the first part of this lemma.
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Figure 2.8: (Proof of Lemma 2.18) This configuration necessarily follows from the transi-
tion diagram in case 3 of the proof. Then (N,M) is a Nash equilibrium, contradicting the
uniqueness of the completely mixed Nash equilibrium.

• Case 2: (i, 3)⇒ (2, 3), i = 1, 2, that is, both arrows pointing into (2, 3).

Then either column 2 dominates column 3, contradicting Lemma 2.8, or there is an

alternating cycle, contradicting Lemma 2.16. See Figure 2.7(c).

• Case 3: (3, 3)⇒ (2, 3), (2, 3)⇒ (1, 3), both arrows point upward (Figure 2.7(d)).

To avoid an alternating cycle and a dominated column, one necessarily has (3, 2) ⇒

(3, 3) and (1, 3) ⇒ (1, 2). Further, since row 2 may not dominate row 1 one gets

(1, 1) ⇒ (2, 1). Then (2, 1) ⇒ (3, 1) is necessary to avoid a source in (2, 1), see

Figure 2.7(e). With some further deductions of the same kind one can show that the

only possible transition diagram is the one shown in Figure 2.7(f).

We can now deduce that ΣA and ΣB are partitioned into the regions RB
j and RA

i as

shown in Figure 2.8. Consider the point (ZB
13 ∩ S A

23) × (ZA
23 ∩ S B

13) ⊂ ∂Σ denoted by

(N,M) and note that BRA(M) contains e2 and e3, hence all their convex combinations.

Therefore, N ∈ BRA(M). Analogously, M ∈ BRB(N). Hence (N,M) is a Nash equi-

librium, contradicting our assumption that the completely mixed Nash equilibrium

is unique. (In fact, it follows from this configuration that there exist initial condi-

tions arbitrarily close to the Nash equilibrium whose trajectories spiral off toward

(N,M), and therefore the completely mixed Nash equilibrium cannot be stable for

the dynamics.)

• Case 4: (1, 3)⇒ (2, 3) and (2, 3)⇒ (3, 3), that is, both arrows point downward.

This case can be treated analogously to the previous one.

We have shown that a source in the diagram contradicts our assumption of a zero-

sum game with unique, completely mixed Nash equilibrium, which finishes the proof. �
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Remark 2.19. The above result remains true for general zero-sum games of dimension

n × n with unique, completely mixed Nash equilibrium (recall from Lemma 1.10 that in a

game with unique, completely mixed Nash equilibrium, both players necessarily have the

same number of strategies). In this thesis we only need the statement for 3 × 3 games, and

therefore restricted ourselves to the more elementary proof of this case.

Note however, that the above proof does not make use of the dimension to show

that such a zero-sum game does not admit sinks in its transition graph. To prove that the

transition graph of an n×n zero-sum game with unique, completely mixed Nash equilibrium

also cannot have any sources, one could, for instance, use the induced Hamiltonian flow

of fictitious play presented in Section 1.2.6. As was shown in [92], this induced flow is

volume-preserving and has no stationary points. Both properties can be shown to contradict

the existence of sources in the transition graph. One argument is that the block structure

of fictitious play is preserved in the induced flow, and the existence of a convex block of

positive volume with an entirely outward pointing vector field on its boundary contradicts

the volume preservation of the flow.

Our aim is now to get a full characterisation of all combinatorial configurations

that can occur in zero-sum games. This can be done after defining a suitable notion of

combinatorially equivalent games.

Definition 2.20. We call two non-degenerate m × n bimatrix games (A, B) and (C,D) com-

binatorially identical, if they induce the same transition relation, that is, (i, j) ⇒ (i′, j′) for

(A, B) if and only if (i, j)⇒ (i′, j′) for (C,D).

We call two bimatrix games (A, B) and (C,D) combinatorially equivalent, if there

exist permutation matrices P and Q such that (A, B) and (PCQ, PDQ) are combinatorially

identical or (B>, A>) and (PCQ, PDQ) are combinatorially identical.

Remark 2.21. Note that the bimatrix game (B>, A>) is the game obtained from (A, B) by

swapping the two players’ roles.

The definition expresses the idea that games are combinatorially equivalent if they

have the same transition diagram up to permutation of rows and columns. We can now state

and proof our main result in this section.

Theorem 2.22. The types of transition diagram (combinatorial equivalence classes) that

can occur for a non-degenerate 3 × 3 zero-sum game with unique, completely mixed Nash

equilibrium are precisely all those that satisfy the following (combinatorial) conditions:

(1) No row of the diagram has three horizontal arrows pointing in the same direction and

no column has three vertical arrows pointing in the same direction.
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(2) No three horizontal arrows between two columns point in the same direction and no

three vertical arrows between two rows point in the same direction.

(3) The diagram has no sinks.

(4) The diagram has no sources.

(5) The diagram has no alternating cycles.

This gives precisely 23 distinct types of transition diagrams, up to combinatorial equiva-

lence. These are listed in Figure 2.111.

Throughout the proof of the theorem we will make use of the following notion.

Definition 2.23. We call an oriented loop of length four formed by the arrows in a transition

diagram a short loop, see Figure 2.9(a). A short loop always has the form

(i, j)⇒ (i′, j)⇒ (i′, j′)⇒ (i, j′)⇒ (i, j)

and we indicate the vertex in the diagram encircled by such loop by a •.

Remark 2.24. If we consider the 2 × 2 bimatrix game (A′, B′) formed by removing from

A and B all rows except for i, i′ and all columns except for j, j′, then it can be checked that

(i, j) ⇒ (i′, j) ⇒ (i′, j′) ⇒ (i, j′) ⇒ (i, j) is a short loop if and only if (A′, B′) is linearly

equivalent to a 2 × 2 zero-sum game with unique, completely mixed Nash equilibrium (see

Figure 1.3(c) and Figure 1.4).

Proof of Theorem 2.22. We already know that (1) is true for any transition diagram of a

game and (2) is equivalent to the game not having any dominated strategies, which is im-

plied by the existence of a unique, completely mixed Nash equilibrium and Lemma 2.8. So

the only conditions that are left to check are (3)-(5). By Lemmas 2.16 and 2.18, we already

know that (3)-(5) are necessary conditions for a transition diagram to be realisable by a

zero-sum game.

To show that (1)-(5) are also sufficient, we will proceed in two steps: we will show

that combinatorially these conditions give rise to precisely 23 types of diagrams (up to

permutation of rows and columns and transposition), and then we will give examples of

zero-sum games realising each of these types. Because of the initially large number of

possible transition diagrams, we will group them by the number of short loops contained in

them.
1Coincidentally (or not?) the number 23 is the most sacred number for the religion called ‘Discordianism’.

In this religion 23 is the number of the highest deity, Eris, who is the Greek goddess of Chaos.
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: (Proof of Theorem 2.22)
(a) A short loop.
(b) Two rows coinciding at all positions.
(c) Two rows coinciding at one and differing at two positions.
(d) Lemma 2.26(1): if two rows differ at two positions, then either there is a short loop or
one row dominates the other.
(e) Lemma 2.27: two short loops not between the same rows/columns.
(f) Lemma 2.26(2) applied to columns 1,2 and 2,3 in previous diagram.

Let us introduce the notion of rows (or columns) coinciding or differing at a posi-

tion. We say that two rows i and i′ coincide between columns j and j′, if

(i, j)⇒ (i, j′) ⇔ (i′, j)⇒ (i′, j′),

and they differ at this position (between columns j and j′) otherwise. For example, in

Figure 2.9(b) rows 1 and 2 coincide at all positions, whereas in Figure 2.9(c) they coincide

at one and differ at two positions.

We now need a few technical lemmas about transition diagrams satisfying (1)-(5)

of Theorem 2.22. The first lemma is obvious, and we omit a formal proof.

Lemma 2.25. Two columns (or rows) of a 3 × 3 transition diagram satisfying (1)-(5) can

have at most two short loops between them.

Lemma 2.26. In a 3×3 transition diagram satisfying (1)-(5), the following statements hold.

(1) If two rows (columns) differ at two positions, then there is a short loop between these
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rows (columns).

(2) If two rows (columns) differ at all three positions, then there are precisely two short

loops between them.

(3) If two rows (columns) coincide at two positions, then there is a short loop between

each of these rows (columns) and the third row (column). In particular, the diagram

has at least two short loops.

(4) If two rows (columns) coincide at all three positions, then there are precisely two

short loops between each of these rows (columns) and the third row (column). Then

the diagram has precisely four short loops.

Proof. For (1), note that every 2 × 2 block obtained by deleting one row and one column

from a 3 × 3 transition diagram either has two arrows pointing in the same direction or

contains an alternating cycle or a short loop. Assume that two rows (columns) differ at two

positions (Figure 2.9(c)). Since by hypothesis (5) of the theorem we don’t allow alternating

cycles, the only way a short loop between the two rows (columns) can be avoided is by

having all arrows between them pointing in the same direction (Figure 2.9(d)). But this

case is ruled out by hypothesis (2). Hence there is a short loop between the two rows

(columns).

Essentially the same argument shows that statement (2) of the lemma holds.

If two rows (columns) coincide at two positions, then since no column (row) is

allowed to be dominated, each of these rows (columns) differs at two positions from the

third row (column). Statement (3) then follows from statement (1).

The same argument proves statement (4). The fact that the diagram then has pre-

cisely four short loops follows from Lemma 2.25 and the fact that there cannot be any short

loops between the two rows (columns) that coincide at all positions. �

We now proceed to grouping all possible transition diagrams by the number of short

loops contained in them.

Lemma 2.27. A 3× 3 transition diagram satisfying (1)-(5) has between three and six short

loops.

Proof. Note first that for any pair of rows (columns) of a transition diagram, at least one of

the cases of Lemma 2.26 applies and we can make the following list of cases for two rows

(columns), say i and i′:

• i and i′ coincide at 0 positions, then they have precisely 2 short loops between them.

• i and i′ coincide at 1 position, then they have 1 or 2 short loops between them.
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• i and i′ coincide at 2 positions, then there is at most 1 short loop between them, and

there is at least 1 short loop between each of them and the third row (column).

• i and i′ coincide at 3 positions, then they have no short loops between them, and there

are precisely 2 short loops between each of them and the third row (column).

It is clear from these that there cannot be such transition diagram without any short loops:

pick any two rows, and in each of the above cases it follows that the diagram has at least

one short loop.

Similarly, the transition diagram cannot have precisely one short loop. Suppose for

a contradiction that without loss of generality there is a single short loop between rows 1

and 2. Now consider rows 2 and 3, which do not have a short loop between them. Then

they must have at least 2 coinciding positions. But having 2 or more coinciding positions

implies that there is also a short loop between rows 3 and 1, which is a contradiction.

We now show that there is no transition diagram with precisely two short loops.

Assume first that such diagram exists and both short loops are between the same two rows

(or columns), say rows 1 and 2. Applying the above rules to rows 2 and 3 we see that either

there have to be more short loops between rows 2 and 3 or between rows 3 and 1, which is

in either case a contradiction. So the only possibility left is that the two short loops are not

between the same two rows or columns.

Here there are two cases to check: either both short loops run clockwise or one runs

clockwise and one runs anti-clockwise (any other configuration leads to a combinatorially

equivalent diagram). Assume the short loops have different orientation. Without loss of

generality, we have the configuration shown in Figure 2.9(e). By Lemma 2.26(2) applied to

columns 1, 2 and 2, 3 we get that (1, 1)⇒ (2, 1) and (2, 3)⇒ (3, 3) (Figure 2.9(f)). But now

Lemma 2.26(1) applied to columns 1 and 3 implies that there is a third short loop. A similar

chain of deductions shows that the case with both short loops having the same orientation

also cannot happen. It follows that a transition diagram with two short loops is not possible.

Finally, the upper bound of six short loops follows directly from Lemma 2.25, which

finishes the proof of the lemma. �

We can now state the last lemma needed for Theorem 2.22. The proof of the lemma

consists of easy (but somewhat tedious) deductions of the only possible combinatorial con-

figurations for the transition diagrams and we do not provide complete details. Lemma 2.26

is very useful to reduce the number of diagrams that have to be checked.

Lemma 2.28. Up to combinatorial equivalence, there are precisely

• 2 non-equivalent transition diagrams with precisely 3 short loops,

52



(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 2.10: The possible (non-equivalent) configurations for a transition diagram contain-
ing 3 (a-c), 4 (d-g), 5 (h-i) or 6 (j) short loops.

• 15 non-equivalent transition diagrams with precisely 4 short loops,

• 5 non-equivalent transition diagrams with precisely 5 short loops,

• 1 transition diagram with precisely 6 short loops,

that satisfy conditions (1)-(5) of Theorem 2.22.

Proof. Up to combinatorial equivalence, there are three ways in which three short loops can

be positioned, see Figure 2.10(a)-(c). It can be checked that only the first of these can give

a transition diagram that satisfies (1)-(5), and there are two non-equivalent such diagrams.

Further, there are four ways to position four short loops (Figure 2.10(d)-(g)), the

first three of which admit five non-equivalent transition diagrams each, whereas the last one

contradicts (1)-(5).

The two ways to position five short loops (Figure 2.10(h)-(i)) admit two and three

non-equivalent transition diagrams satisfying (1)-(5), respectively.

At last, by Lemma 2.25 it is obvious that up to combinatorial equivalence the only

way to position six short loops is the one shown in Figure 2.10(j), and it is straightforward

to check that there is only one possible transition diagram of this type. �

Together with Lemma 2.27, this shows that there are precisely 23 transition diagram

types satisfying (1)-(5). We already know that (1)-(5) are necessary for a transition diagram
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to correspond to a non-degenerate 3 × 3 bimatrix game with unique, completely mixed

Nash equilibrium. A list of the 23 transition diagram types and example zero-sum game

bimatrices realising them is given in Figure 2.11, showing that (1)-(5) are also sufficient.

This finishes the proof of Theorem 2.22. �

2.1.6 Periodic and quasi-periodic orbits

As a last item of the combinatorial description of fictitious play we discuss its periodic and

quasi-periodic orbits. These will also be of importance in Section 2.2, where we numeri-

cally observe and categorise different types of fictitious play orbits.

We first introduce the game-theoretic notion of quasi-periodicity and investigate the

relation to its usual mathematical definition. This notion was first introduced in [83].

Definition 2.29. We say that a solution of (FP) is quasi-periodic (in the game-theoretic

sense), if its itinerary is periodic.

Quasi-periodic orbits of fictitious play have been studied by Rosenmüller [83] and

Krishna and Sjöström [57]. Their main result shows that in almost all games of dimension

greater than 2×2, cyclic convergence to a completely mixed Nash equilibrium (that is, along

a game-theoretically quasi-periodic orbit) cannot occur for an open set of initial conditions.

Theorem 2.30 (Krishna and Sjöström [57]). For (Lebesgue) almost all bimatrix games,

if there is an open set of initial conditions whose orbits converge to a Nash equilibrium

(EA, EB) along the same periodic itinerary, then # supp(EA) = # supp(EB) ≤ 2, where

supp(x) denotes the number of non-zero entries of the vector x ∈ ΣA or ΣB.

Remark 2.31. Note how this result relates to zero-sum games. We know from Theo-

rem 1.27 that in a zero-sum game with unique, completely mixed Nash equilibrium (EA, EB)

all initial conditions have orbits converging to (EA, EB), and in many examples there are

open sets of such initial conditions converging with the same periodic itinerary (see, for

instance, the examples in Section 2.2). This however does not contradict Theorem 2.30,

since zero-sum games form a null set among all bimatrix games.

On the other hand, this theorem seems somewhat related to Hofbauer’s converse

conjecture (Conjecture 1.29) that in a non-zero-sum game, a completely mixed Nash equi-

librium cannot be stable for fictitious play dynamics, as it shows that at least cyclic conver-

gence to such equilibrium is exceptional in games of dimension greater than 2 × 2.

A priori the game-theoretic notion of quasi-periodicity is different from the usual

mathematical definition (of an orbit which is dense in an invariant torus). In particular, a

game-theoretically quasi-periodic orbit might be an actual periodic or quasi-periodic orbit,
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


74 26 22
−88 83 −9
69 27 66






13 −24 −15
3 155 −13
14 −90 31







66 −296 −50
−84 9 −69
−42 −93 −46






142 −62 183
−24 −123 −50
74 −8 122







113 −53 47
−73 120 −15
20 8 36







22 −55 −42
−94 −14 −58
−16 −96 −18







24 −14 33
−26 20 9
84 10 −37






139 76 164
16 162 91
133 108 120







7 84 −58
127 35 196
49 63 93






−33 62 −37
52 −92 18
−18 −10 9






−91 131 −72
84 −123 53
−7 4 10







9 111 −83
43 0 45
11 12 53






−11 48 3
128 −70 27
−26 6 15







67 −11 30
−97 11 7
22 18 −13







17 −45 68
−64 −33 −51
−10 −32 −83







34 −4 22
−32 16 7
96 23 −53







14 −19 1
−40 15 −1
16 20 −89







44 6 39
−1 168 33
48 101 12







38 101 0
114 75 98
31 92 91







22 38 −5
56 −33 32
−59 45 5






−29 52 −52
40 −47 16
−15 −8 21






−56 36 −50
26 −64 −14
−20 −17 18






−22 40 −16
63 20 21
−83 30 42




Figure 2.11: The 23 transition diagram types as in Theorem 2.22, sorted by the number of
short loops contained in them, together with the respective example matrices A, such that
the bimatrix games (A,−A) realise the given diagram types.
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but it might also be an orbit which converges in a cyclic way, periodically switching strate-

gies as it approaches an equilibrium point. However, we will show that the two notions are

closely related.

As before, we restrict our attention to the case of 3×3 zero-sum games with unique,

completely mixed Nash equilibrium, although the arguments are similar for any higher-

dimensional n × n zero-sum game. Every orbit of fictitious play in such a game converges

to Nash equilibrium, so neither periodic nor quasi-periodic orbits (in the classical sense)

can occur. Recall from Section 1.2.6 that fictitious play in this case induces a Hamiltonian

flow on S 3 given by the differential inclusion (1.6), which describes its ‘spherical’ motion

obtained by a certain central projection from the Nash equilibrium and ignores its (converg-

ing) radial direction. This induced flow still contains the entire symbolic information of the

original fictitious play flow. In particular, an orbit of this Hamiltonian system has the same

game-theoretic itinerary as any fictitious play orbit of which it is a projection.

This makes the induced Hamiltonian flow (1.6) perfectly suitable to look at game-

theoretic quasi-periodicity, as it reduces the dimension of the studied dynamical system

without removing any relevant information. In fact, like the fictitious play flow, the in-

duced flow is continuous and a piecewise translation flow, while additionally it is volume-

preserving and has no stationary points. To tackle the question of quasi-periodicity, we

will consider its first return maps to the (two-dimensional) planes on which its trajectories

change direction, that is, where one of the best response correspondences is multi-valued.

These are precisely the projections of the hyperplanes ZB
ii′ × ΣB and ΣA × ZA

j j′ to the topo-

logical three-sphere H−1(1) (see Section 1.2.6).

Let S be such a plane, let x ∈ S have a quasi-periodic orbit under the induced flow

with (infinite) periodic itinerary I = I(x), and let T̂ be the first return map to S (defined on

the non-empty subset of S of points whose orbits return to S ). Note that T̂ acts as a shift by

a finite number of symbols on the itinerary of x. In particular, there exists n ≥ 1, such that

T̂ n(x) has the same itinerary as x. Let us denote T = T̂ n so that each point in the T -orbit of

x has the same periodic itinerary I, and denote U = UI = {z ∈ S : I(z) = I(x) = I}.

Lemma 2.32. The set U is convex, T (U) ⊆ U, and T |U : U → U is affine.

Proof. Convexity follows from the convexity of the indifference planes and the fact that the

flow in each region Ri j follows the ’rays’ of a central projection. By the definition of T we

have that T (U) ⊆ U. It is proved in [92] that T is area-preserving and piecewise affine on

S . Since all points in U have the same itinerary, it follows that T |U is indeed affine. �

Theorem 2.33. Let x ∈ S correspond to a (game-theoretically) quasi-periodic orbit of the

induced flow of a 3 × 3 zero-sum game with unique, completely mixed Nash equilibrium,
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where S is an indifference plane and T is the return map to S , such that I(T (x)) = I(x). Let

U ⊆ S be the set of points with the same itinerary as x. Then one of the following holds:

(1) The orbit of x is periodic and T n(x) = x for some n ≥ 1.

(2) There is a point x0 ∈ U whose orbit is a saddle periodic orbit; that is, for T , it is a

hyperbolic fixed point with a contracting and an expanding direction. The T-orbit of

x lies on its stable manifold and converges to x0, that is, T n(x)→ x0 as n→ ∞.

(3) The T-orbit of x lies on a T-invariant circle (or more generally, an ellipse) and x cor-

responds to a quasi-periodic orbit of the Hamiltonian dynamics (in the usual sense),

that is, its orbit under the flow is dense in an invariant torus.

In the third case, U is a disk and T |U : U → U is a rotation by an irrational angle (in

suitable linear coordinates). In this case (3) holds for every x′ ∈ U.

Proof. The result follows immediately from the previous lemma, that is, the fact that T |U
is a planar affine transformation with T (U) ⊆ U. �

The theorem shows that every quasi-periodic orbit (in the game-theoretic sense)

is actually either periodic or quasi-periodic in the usual sense, or converges to a periodic

orbit. Conversely, every quasi-periodic orbit in the usual sense, which lies on a torus that

only intersects the indifference surfaces along whole circles (and never just partially along

an arc) is clearly quasi-periodic in the game theoretic sense. Throughout the rest of this

chapter, we will always refer to the game-theoretic definition, when using the notion of

quasi-periodicity. We conclude with the following corollary.

Corollary 2.34. If the flow induced by fictitious play dynamics in a 3×3 zero-sum bimatrix

game has an orbit with periodic itinerary, then it also has an actual periodic orbit.

2.2 Numerical investigation of ergodic properties

In this section we present some numerical observations on the behaviour of fictitious play

dynamics for zero-sum games. We investigate a few different aspects:

• the time fraction that different orbits spend in each of the regions Ri j,

• the frequencies with which different orbits visit the regions Ri j and the transition

probabilities for transitions between regions,

• the different types of orbits that can occur and their itineraries (periodic, quasi-

periodic, space-filling).
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The systems we consider are randomly generated examples of zero-sum games of

different combinatorial types (see Section 2.1.5), for which we look at the induced Hamil-

tonian dynamics (see Section 1.2.6). For randomly chosen initial points we compute the

orbits of the best response dynamics (more precisely, its induced analogue) and study the

time fractions spent in each region Ri j and the frequencies with which the orbits visit the

regions. Note that here for the first time we make use of the autonomous version of fictitious

play called best response dynamics, given by the differential inclusion (BR). Other than fic-

titious play orbits, best response orbits do not slow down over time, and the time they spend

in each region relates more straightforwardly to the arc length of the orbit passing through

that region. Regarding the presented types of orbit we do not claim to give an exhaustive

account of occurring types but rather a list of examples illustrating a few key concepts.

Formally, for an orbit of the best response dynamics (p(t), q(t)), t > 0, with itinerary

(i0, j0)→ (i1, j1)→ · · · → (ik, jk)→ · · · and switching times (tn) we define

Pi j(n) =
1
tn

∫ tn

0
χi j(p(s), q(s)) ds ,

where χi j is the characteristic function of the region Ri j. Alternatively, we record the num-

ber of times that each region is being visited by an orbit and compute the frequencies:

Qi j(n) =
1
n

n−1∑
k=0

Ii j(ik, jk) , where Ii j(ik, jk) =

1 if (ik, jk) = (i, j),

0 otherwise.

We write P = (Pi j) and Q = (Qi j) for the matrices containing all the above frequencies.

Throughout the following examples we look at orbits of the first return maps for

the best response dynamics to certain surfaces of section. The most convenient choice for

such a surface is an indifference plane (either ZB
ii′ ×ΣB or ΣA × ZA

j j′). We will mostly use the

indifference planes of the form ZB
ii′ × ΣB, denoted by

S ii′ =
{
(p, q) ∈ Σ : {i, i′} ⊂ BRB(p)

}
.

Example 2.35 (Uniquely ergodic case). Let the zero-sum bimatrix game (A, B) be given by

A =


22 34 −4

7 −32 16

−53 96 23

 , B = −A.

We numerically calculate orbits with itineraries of 104 transitions for several hun-

dreds of randomly chosen initial conditions. For all of these orbits, the evolution of P(n)
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and Q(n) indicates convergence to

P ≈ 10−2 ·


13 5 27

14 5 27

3 1 5

 , Q ≈ 10−2 ·


12 9 19

9 13 15

10 5 8

 .
In Figure 2.12, the evolution of some of the Pi j(n) and Qi j(n) along an orbit is

shown. This or very similar statistical behaviour is observed for all sampled initial condi-

tions. It seems to suggest that initial conditions with quasi-periodic orbits have zero or very

small Lebesgue measure in the phase space of best response dynamics for this bimatrix

game, as quasi-periodicity in all our experiments leads to very rapid convergence to cer-

tain frequencies. Most of the space seems to be filled with orbits that statistically resemble

each other in the sense that they all visit certain portions of the space (the regions Ri j) with

asymptotically equal (or very close) frequencies. The same seems to hold for the fraction

of time spent in each region by the orbits.

Figure 2.13 shows the intersections of a best response orbit for this game with S 12,

S 23 and S 31, that is, an orbit of the first return map of these surfaces. Each S ii′ consists

of three triangular pieces, corresponding to the three pieces of the indifference set between

regions Ri j and Ri′ j for j = 1, 2, 3. Inside each of these triangles, the orbit seems to fill the

space rather uniformly, suggesting ergodicity (of Lebesgue measure). If the best response

dynamics had invariant tori, these would appear on all or some of these sections as invariant

circles whose interior cannot be entered by orbits starting outside. Judging from the above

observations, in this example they either don’t exist or have very small radius.

Example 2.36 (Space decomposed into ergodic and elliptic regions). In this example we

consider a bimatrix game from the family of games studied in [90, 93], which we discussed

in Section 1.3. Let the zero-sum bimatrix game (A, B) be given by

A =


1 0 σ

σ 1 0

0 σ 1

 , B = −A,

where σ = (
√

5 − 1)/2 ≈ 0.618 is the golden mean.

Two types of orbit can be (numerically) observed for the best response dynamics

of this game. The first type resembles the orbits in the previous example. The empirical

frequencies Pi j(n) and Qi j(n) along such orbits initially behave erratically but seem to con-

verge to certain values or narrow ranges of values, which are the same for all such orbits:
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Figure 2.12: (Example 2.35) The first plot shows the evolution of P21(n) and Q21(n) along
an orbit with itinerary of length 3 · 104. A certain ‘stabilisation’ and convergence to the val-
ues P21 ≈ 0.14 and Q21 ≈ 0.09 or small intervals containing these values can be observed.
The second plot shows the evolution of P32(n) and Q32(n) along the same orbit. Here the
observed limits (or limit intervals) are near the values P32 ≈ 0.01 and Q32 ≈ 0.05.

Figure 2.13: (Example 2.35) Typical orbit of induced flow intersected with the three sur-
faces S 12, S 23 and S 31. The original orbit has an itinerary of length 2 · 106. The three
triangular regions in each of the S ii′ correspond to the different possible transitions between
regions Ri j and Ri′ j for j = 1, 2, 3 and are indicated by dashed lines. In other words, the
images show an orbit of the first return map to the surfaces of section S ii′ . The different
visiting frequencies of the regions can clearly be seen from the different densities of orbit
points. The orbit points inside each triangular region seem to be uniformly distributed.
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Figure 2.14: (Example 2.36) The evolution of P32(n) and Q32(n) along a typical orbit out-
side of the invariant torus.

Figure 2.15: (Example 2.36) Typical orbit of induced flow intersected with the three indif-
ference planes of a player. The orbit has an itinerary of length 106. The different visiting
frequencies of the regions can be seen by the different densities of orbit points. The orbit
points inside each triangular region seem to be uniformly distributed but leave out elliptical
regions in some of the regions. These contain quasi-periodic orbits on invariant circles.

P ≈ 10−2 ·


9 11 13

13 9 11

11 13 9

 , Q ≈ 10−2 ·


11 13 9

9 11 13

13 9 11

 .
Seemingly, the values of Q(n) are less erratic, and in most of our experiments they

seem to converge faster than those of P(n). As an example, the evolution of P32(n) and

Q32(n) along a typical orbit can be seen in Figure 2.14.

As in the previous example, in Figure 2.15 we show the intersection of one such

orbit with the surfaces S ii′ . Once again the orbit points have a certain seemingly uniform

density inside each region, but here they leave out an elliptical region on each of the indif-

ference planes. This invariant region consists of invariant circles, formed by quasi-periodic

orbits of the system (the second type of observed orbits). The centre of the circles corre-
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(a) (b)

Figure 2.16: (a) (Example 2.36) The transition diagram of the bimatrix game. The periodic
itinerary of the quasi-periodic orbits forming an invariant torus is indicated by a dashed line.
(b) (Example 2.37) The transition diagram is the same as in the previous example. How-
ever, there is an invariant torus of quasi-periodic orbits with a more complicated periodic
itinerary.

sponds to an actual periodic orbit, that is, an elliptic fixed point of the return map to one

of the indifference planes. See [93] for an explicit analytic investigation of this (which is

made possible by the high symmetry of this particular bimatrix game).

The invariant circles in the elliptical region correspond to invariant tori of the best

response dynamics. Their itinerary is periodic with period 6:

(1, 1)→ (1, 2)→ (2, 2)→ (2, 3)→ (3, 3)→ (3, 1)→ (1, 1)→ · · · .

Figure 2.16(a) shows the transition diagram for this bimatrix game. The periodic

itinerary is indicated by a dashed line as a loop in the transition diagram. The empirical

frequencies along such quasi-periodic orbits converge to

P = Q =


1/6 1/6 0

0 1/6 1/6

1/6 0 1/6

 .
Figure 2.15 indicates that there are no other invariant tori for this system, that is, no

open set of initial conditions outside of the visible elliptical regions, whose orbits are all

quasi-periodic.

The following questions arise naturally from the above example:

• Does an invariant torus of quasi-periodic orbits always have a ‘simple’ periodic

itinerary?
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Figure 2.17: (Example 2.37) Two orbits (their intersections with the indifference planes
S ii′) are shown: one which stochastically fills most of the space and one which lies in an
invariant torus. The latter intersects the first surface once and the other two three times
each. The intersections of the (very thin) torus with the planes are marked with rectangles
and shown magnified in the bottom row.

• Are the periods of such elliptic islands necessarily equal to 6?

As the next example shows, the situation can indeed be more complicated and less simple

paths through the transition diagram are possible candidates for the periodic itinerary of

quasi-periodic orbits in an invariant torus.

Example 2.37 (Quasi-periodic behaviour with itineraries of higher period). Consider the

bimatrix game (A, B) with

A =


84 −37 10

24 33 −14

−26 9 20

 , B = −A.

Generally, the observations here coincide with Example 2.35. However, one can

detect a (quite thin) invariant torus. Figure 2.17 shows a typical orbit stochastically filling

most of the space. In the bottom row of the same figure, the regions marked by rectangles

are enlarged to reveal a thin invariant torus. These quasi-periodic orbits intersect S 12 once,

S 23 and S 31 three times each. The orbits look essentially like the quasi-periodic orbits in

the previous example, but with an extra loop added. The itineraries are periodic with period
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Figure 2.18: (Example 2.38) The invariant torus (corresponding to quasi-periodic orbits)
intersects two of the indifference planes of the second player, while not intersecting the
third one at all. The right image is a magnification of the region marked by a rectangle.

13, where each period is of the form

(1, 1)→ (1, 2) → (2, 2)→ (2, 3)→ (3, 3)→ (3, 1)→

(1, 1)→ (1, 2)→ (3, 2) → (2, 2)→ (2, 3)→ (3, 3)→ (3, 1)→ (1, 1).

In Figure 2.16(b), this itinerary is shown as a loop in the transition diagram. The example

demonstrates that combinatorially more complicated quasi-periodic orbits are possible for

open sets of initial conditions in the best response dynamics of zero-sum games.

The next example shows an even more complex quasi-periodic structure and gives

numerical evidence for more subtle and involved effects than those observed above.

Example 2.38 (Coexistence of different elliptic behaviour). Let us now consider the bima-

trix game (A, B) with

A =


−92 18 52

62 −37 −33

−10 9 −18

 , B = −A.

As in all the previous examples, the largest part of the phase space of the best re-

sponse dynamics seems to be filled with orbits which stochastically fill most of the space

and along which the frequency distributions P(n) and Q(n) seem to converge to certain

(orbit-independent) values. Again, an invariant torus can be found. It is more complicated

than those observed in the other examples (see Figure 2.18). The orbits forming this in-

variant torus are quasi-periodic and have an itinerary of period 60. Its structure suggests a
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generalisation of the type of itinerary observed in Example 2.37. It consists of a sequence

of blocks of the following two forms:

a = (1, 1)→ (3, 1)→ (2, 1)→ (2, 2)→ (3, 2)→ (3, 3)→ (1, 3)→ (1, 1),

b = (1, 1)→ (3, 1)→ (2, 1)→ (2, 2)→ (3, 2)→ (3, 3)→ (1, 3)→ (1, 2)→ (1, 1).

The two blocks are shown as paths in the transition diagram in Figure 2.21. Each

period of the itinerary of orbits in the invariant torus then has the form

a→ a→ b→ a→ b→ b→ a→ b.

As in the previous example, the two blocks are the same except for one element (in the

previous example the itinerary consisted of two blocks concatenated alternatingly).

In Figure 2.19 the intersection of an orbit outside of the invariant torus with one

of the indifference planes is shown together with a quasi-periodic orbit. The orbit seems

to have essentially the same property of filling the space outside the invariant torus, as in

the previous examples. However, a closer look at a neighbourhood of the invariant circles

(see the right part of Figure 2.19) reveals that the orbit not only misses out the invariant

circles but also a certain ‘heart-shaped’ region surrounding these. The investigation of

orbits with initial conditions in this set reveals a range of phenomena not observed in any

of the previous examples.

Several different orbits with initial conditions in this region can be seen in Fig-

ure 2.20. The orbit points show complicated structures, revealing a large number of regions

of ‘stochastic’ behaviour, as well as invariant regions of periodic orbits of high periods

and corresponding quasi-periodic orbits (Figure 2.22 shows some examples of such quasi-

periodic orbits of different higher periods). Some of these orbits spend very long times

(itineraries of length 106 and more) in the heart-shaped region before diffusing into the

much larger stochastic portion of the space. On the other hand, we observe orbits that

stochastically fill (heart-shaped) annuli leaving out islands of quasi-periodic orbits. These

annuli seem to be invariant for the dynamics (see Figure 2.23).

Altogether, the observations described above strongly indicate the occurrence of

‘Arnol’d diffusion’: the coexistence of a family of invariant annuli, which contain regions of

stochastic (space-filling) motion and islands of further periodic orbits and invariant circles

(quasi-periodic orbits).

We would like to end this section by proposing some open questions for further

investigation:

(1) Does the Hamiltonian system induced by a 3 × 3 zero-sum bimatrix game always
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Figure 2.19: (Example 2.38) The left image shows a typical orbit that seems to fill almost all
of the space. The right image shows a magnified view of the ’heart-shaped’ region spared
out by this orbit. Also both images show the invariant circles of a quasi-periodic orbit inside
the ’heart-shaped’ region.

Figure 2.20: (Example 2.38) Two different orbits with initial conditions in the ’heart-
shaped’ region. Regions of stochastic motion as well as invariant islands of periodic and
quasi-periodic orbits are clearly visible. The first orbit spends a long time in the ’heart-
shaped’ region before it diffuses into the larger ’ergodic’ part of the space.
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Figure 2.21: (Example 2.38) The two block types a and b of the itinerary for the quasi-
periodic orbits in this system. Note that they differ by one step only.

have quasi-periodic orbits / invariant tori? Example 2.35 suggests that it is possible

to have topological mixing and that the Lebesgue measure is ergodic. However, this

might be due to the limited resolution of our numerical simulations and images.

(2) Are there orbits which are dense outside of the elliptic regions? Are almost all orbits

outside of the elliptic regions dense?

(3) Does Example 2.38 (and similar ones) have infinitely many quasi-periodic orbits of

different periods? The pictures of orbits (for instance, Figures 2.20 and 2.23) show

many regions that could potentially contain the corresponding elliptic islands of dif-

ferent periods. All regions that we investigated for this property actually revealed

quasi-periodic orbits.

(4) Given a specific bimatrix example, are there a finite number of blocks, so that the

itinerary of any orbit on an elliptic island is periodic with each period being a (finite)

concatenation of these blocks? The examples we looked at suggest the answer to be

positive.
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Figure 2.22: (Example 2.38) Two different quasi-periodic orbits (invariant tori for the best
response dynamics) of different periods.

Figure 2.23: (Example 2.38) An orbit restricted to an invariant heart-shaped annulus.
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Chapter 3

Payoff performance of fictitious play

In this chapter we investigate how well fictitious play performs in terms of average payoff,

particularly compared to the payoff of two players who permanently play a Nash equilib-

rium strategy. The latter is often silently assumed to be optimal by classical rationality

theory (at least when the Nash equilibrium is unique). In contrast, we show that in many

games, two players involved in fictitious play may in the long run both earn a higher payoff

than their Nash equilibrium payoff, either on average, or even at all times.

In Section 3.1 we analyse the limiting behaviour of fictitious play dynamics, and in

Section 3.2 we use this to compare the payoff along the limit sets with the Nash equilibrium

payoffs. Ultimately, this allows us to show that every bimatrix game is linearly equiva-

lent to one in which fictitious play Pareto dominates Nash equilibrium and we discuss the

conditions governing the payoff comparison of these two.

In Section 3.2.1 we apply these results to the family of Rock-Paper-Scissor-like

games from Section 1.3 and show that in these games, fictitious play yields better average

payoff to both players than Nash equilibrium.

Conversely, in Section 3.2.2 we investigate the possibility of games in which Nash

equilibrium play dominates fictitious play. We also deduce conditions for this and nu-

merically determine examples in which this is the case. The discussion shows that these

examples are relatively ‘rare’.

Finally, in Section 3.3 we discuss the implications of the results in this chapter for

the notions of equilibrium (in the context of payoff performance of learning algorithms) and

game equivalence.

The contents of this chapter are contained in the preprint [74], which at the time of

submission of this thesis is submitted for publication.
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3.1 Limit set for fictitious play

In this section we study the long term behaviour of (continuous-time) fictitious play. It has

been known since Shapley’s famous version of the Rock-Paper-Scissors game (1.5) that

fictitious play does not necessarily converge to a Nash equilibrium even when the latter is

unique, and can converge to a limit cycle instead (see Section 1.2.5). In fact, convergence

to a unique Nash equilibrium in the interior of Σ seems to be rather the exception than the

rule: It is a standing conjecture that such Nash equilibrium can only be stable for fictitious

play dynamics, if the game is equivalent to a zero-sum game (Conjecture 1.29).

We will show that every fictitious play orbit converges to (a subset of) the set of

so-called ‘coarse correlated equilibria’, sometimes also referred to as the ‘Hannan set’ (see

Hannan [42], Young [99], Hart [44]). In fact, this result follows directly from the ‘belief

affirming’ property of fictitious play, shown in Monderer et al. [65]. However, to the best of

our knowledge, the conclusion that fictitious play has its limit set contained in the Hannan

set, and therefore asymptotically the players have ‘zero regret’, has not been mentioned in

the literature. We also provide a slightly different proof of this fact.

Let us fix some notation. We denote by S A = {1, . . . ,m} and S B = {1, . . . , n} the sets

of pure strategies of the two players in an m× n bimatrix game (A, B). We call S = S A × S B

the joint strategy space, and we call a probability distribution over S a joint probability

distribution. Note that Σ = ΣA × ΣB can be seen as a (proper) subset of the set of joint

probability distributions.

The following definition can be found in Moulin and Vial [71].

Definition 3.1. A joint probability distribution P = (pi j) over S is a coarse correlated

equilibrium (CCE) for the bimatrix game (A, B) if∑
i, j

ai′ j pi j ≤
∑
i, j

ai j pi j

and ∑
i, j

bi j′ pi j ≤
∑
i, j

bi j pi j

for all (i′, j′) ∈ S . The set of CCE is also called the Hannan set.

One way of viewing the concept of CCE is in terms of the notion of regret. Let us

assume that two players are (repeatedly or continuously) playing a bimatrix game (A, B),

and let P(t) = (pi j(t)) be the empirical joint distribution of their past play through time t,

that is, pi j(t) represents the frequency (or fraction of time) of the strategy profile (i, j) along

their play through time t. For x ∈ R, let [x]+ denote the positive part of x: [x]+ = x if x > 0,
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and [x]+ = 0 otherwise. Then the expression∑
i, j

ai′ j pi j(t) −
∑
i, j

ai j pi j(t)


+

can be interpreted as a measure for the regret of the first player from not having played

action i′ ∈ S A throughout the entire past history of play. It is (the positive part of) the

difference between player A’s actual past payoff1 and the payoff she would have received

if she always played i′, given that player B would have played the same way as she did.

Similarly, [
∑

i, j bi j′ pi j(t) −
∑

i, j bi j pi j(t)]+ is the regret of the second player from not having

played j′ ∈ S B. This regret notion is sometimes called unconditional or external regret to

distinguish it from the internal or conditional regret2. In this context the set of CCE can be

interpreted as the set of joint probability distributions with non-positive regret.

It has been shown that there are learning algorithms with no regret, that is, such that

asymptotically the regret of players playing according to such algorithm is non-positive for

all their actions. Dynamically this means that if both players in a two-player game use a

no-regret learning algorithm, the empirical joint probability distribution of actions taken by

the players converges to (a subset of) the set of CCE (not necessarily to a certain point in

this set).

The concept of no-regret learning (also known as universal consistency, see Fu-

denberg and Levine [31]) and the first such learning algorithms have been introduced by

Blackwell [17] and Hannan [42]. More such algorithms have been found later on and

moreover algorithms with asymptotically non-positive conditional regrets have been found

(see, for example, Foster and Vohra [29], Hart and Mas-Colell [45, 46]; for good surveys

see Young [99] or Hart [44]).

We now show that continuous-time fictitious play converges to the set of CCE.

Theorem 3.2. Every trajectory of fictitious play dynamics (FP) in a bimatrix game (A, B)

converges to the boundary of the set of CCE, that is, to the set of joint probability distribu-

tions P = (pi j) over S A × S B such that for all (i′, j′) ∈ S A × S B

∑
i, j

ai′ j pi j ≤
∑
i, j

ai j pi j and
∑
i, j

bi j′ pi j ≤
∑
i, j

bi j pi j,

with equality for at least one (i′, j′) ∈ S A × S B. In other words, fictitious play dynamics

asymptotically leads to non-positive (unconditional) regret for both players.

1Note that
∑

i, j ai j pi j(t) and
∑

i, j bi j pi j(t) are the two players’ respective average payoffs in their play through
time t.

2Conditional regret is the regret from not having played an action i′ whenever a certain action i has been
played, that is, [

∑
j ai′ j pi j −

∑
j ai j pi j]+ for some fixed i ∈ S A.
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Remark 3.3. (1) Note that an orbit of fictitious play (p(t), q(t)), t ≥ t0, gives rise to

a joint probability distribution P(t) = (pi j(t)) via pi j(t) = pi(t) · q j(t). So, when

we say that fictitious play dynamics converges to a certain set of joint probability

distributions, we mean that P(t) obtained this way converges to this set.

(2) Monderer et al. [65] proved a stronger result, that continuous-time fictitious play

is ‘belief affirming’ or ‘Hannan-consistent’. This means that it leads to asymptot-

ically non-positive unconditional regret for the player following it, irrespective of

her opponent’s play (even if the opponent is playing according to some very differ-

ent algorithm). This however is not the case for discrete-time fictitious play (DFP),

whereas the conclusion of Theorem 3.2 also holds in the discrete-time case by ap-

plication of Hofbauer’s limit set theorem for discrete- and continuous-time fictitious

play (Theorem 1.41).

Proof of Theorem 3.2. Let us briefly recall notation from Chapter 1: The payoff function of

player A is uA(p, q) = pAq, her best response correspondence isBRA(q) = arg maxp̄∈ΣA p̄Aq,

and the maximal-payoff function is Ā(q) = maxp̄∈ΣA p̄Aq; similarly, for player B.

We assume here that we have an orbit of (FP), (p(t), q(t)), t ≥ 0. Recall from

Remark 1.15(4) that p(t) = 1
t

∫ t
0 x(s) ds and q(t) = 1

t

∫ t
0 y(s) ds, where x : [0,∞) → ΣA and

y : [0,∞) → ΣB are measurable functions representing the players’ strategies at any time

t ≥ 0, so that x(t) ∈ BRA(q(t)) and y(t) ∈ BRB(p(t)) for t ≥ 1.

By the envelope theorem (see, for example, [91]), for p̄ ∈ BRA(q) we have that

dĀ(q)
dq

=
∂uA(p, q)

∂q

∣∣∣∣∣
p= p̄

= p̄A.

Therefore, since x(t) ∈ BRA(q(t)) for t ≥ 1,

d
dt

(
tĀ(q(t))

)
= Ā(q(t)) + t

d
dt

(
Ā(q(t))

)
= Ā(q(t)) + t · x(t) · A ·

dq(t)
dt

.

Using the definition of fictitious play (FP) and Ā(q(t)) = x(t) · A · q(t), it follows that

d
dt

(
tĀ(q(t))

)
= Ā(q(t)) + x(t) · A · (y(t) − q(t)) = x(t) · A · y(t)

for t ≥ 1. We conclude that for T > 1,∫ T

1
x(t) · A · y(t) dt = T Ā(q(T )) − Ā(q(1)),

and therefore

lim
T→∞

(
1
T

(∫ T

0
x(t) · A · y(t) dt

)
− Ā(q(T ))

)
= 0.
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Note that
1
T

∫ T

0
x(t) · A · y(t) dt =

∑
i, j

ai j pi j(T ),

where P(T ) = (pi j(T )) is the empirical joint distribution of the two players’ play through

time T . On the other hand,

Ā(q(T )) = max
i′

∑
j

ai′ jq j(T ) = max
i′

∑
i, j

ai′ j pi j(T ).

Hence,

lim
T→∞

∑
i, j

ai j pi j(T ) −max
i′

∑
i, j

ai′ j pi j(T )

 = 0.

By a similar calculation for B, we obtain

lim
T→∞

∑
i, j

bi j pi j(T ) −max
j′

∑
i, j

bi j′ pi j(T )

 = 0.

This shows that any orbit of fictitious play converges to the boundary of the set of CCE. �

Let us denote the average payoffs through time T along an orbit of fictitious play as

ûA(T ) =
1
T

∫ T

0
x(t) · A · y(t) dt and ûB(T ) =

1
T

∫ T

0
x(t) · B · y(t) dt.

As a corollary to the proof of the previous theorem we get the following useful result.

Theorem 3.4. In any bimatrix game, along every orbit of fictitious play dynamics we have

lim
T→∞

(
ûA(T ) − Ā(q(T ))

)
= lim

T→∞

(
ûB(T ) − B̄(p(T ))

)
= 0.

Remark 3.5. This formulation of the result shows why Monderer et al. [65] call this prop-

erty ‘belief affirming’. Since Ā(q(T )) and B̄(p(T )) can be interpreted as the players’ ex-

pected payoffs given their respective opponent’s play q(T ) and p(T ), the above theorem

says that the difference between expected and actual average payoff of each player vanish,

so that asymptotically their ‘beliefs’ are ‘confirmed’ when playing fictitious play.

3.2 Fictitious play vs. Nash equilibrium payoff

In this section we investigate the average payoff to players in a two-player game along

the orbits of fictitious play dynamics and compare it to the Nash equilibrium payoff (in

particular, in games with a unique, completely mixed Nash equilibrium).
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Since fictitious play does not generally converge, the question of average payoff

along fictitious play orbits in comparison to Nash equilibrium payoff is non-trivial and

of interest both theoretically and for practical assessment of fictitious play as a sensible

learning algorithm.

We show that in contrast to the usual assumption that players should primarily at-

tempt to play Nash equilibria and that learning algorithms converging to Nash equilibria are

desirable, the payoff along orbits of fictitious play can in some games be better on average

or even Pareto dominate3 the Nash equilibrium payoff. Moreover, we demonstrate that to

every bimatrix game with unique, completely mixed Nash equilibrium, there is a dynam-

ically equivalent game for which this superiority of fictitious play over Nash equilibrium

holds.

Throughout the rest of this section we will assume that all the games under con-

sideration have a unique, completely mixed Nash equilibrium point (EA, EB) (recall from

Lemma 1.10 that in such a game, both players necessarily have the same number of strate-

gies). A first simple situation in which fictitious play can improve upon such a Nash equi-

librium is given by the following direct consequence of Theorem 3.4.

Proposition 3.6. Let (A, B) be a bimatrix game with unique, completely mixed Nash equi-

librium (EA, EB). If Ā(q) ≥ Ā(EB) and B̄(p) ≥ B̄(EA) for all (p, q) ∈ Σ, then asymptotically

the average payoff along fictitious play orbits is greater than or equal to the Nash equilib-

rium payoff (for both players).

Remark 3.7. The hypothesis of this proposition, Ā(q) ≥ Ā(EB) and B̄(p) ≥ B̄(EA) for all

(p, q) ∈ Σ, means that

uA(EA, EB) = min
q∈ΣB

max
p∈ΣA

pAq and uB(EA, EB) = min
p∈ΣA

max
q∈ΣB

pBq,

that is, the Nash equilibrium payoff equals the minmax payoff of the players. For a non-

zero-sum game this is a rather strong assumption, suggesting an unusually bad Nash equi-

librium in terms of payoff. However, as we will show in the next result, at least from a

dynamical point of view, the situation is not at all exceptional.

Theorem 3.8. Let (A, B) be an n × n bimatrix game with unique, completely mixed Nash

equilibrium (EA, EB). Then there exists a linearly equivalent game (A′, B′), for which

Ā′(q) > Ā′(EB) and B̄′(p) > B̄′(EA) for all p ∈ ΣA \ {EA} and q ∈ ΣB \ {EB}.

This result states that every bimatrix game with unique, completely mixed Nash

equilibrium is linearly equivalent (see Definition 1.6) to one in which players are better
3By saying that fictitious play Pareto dominates Nash equilibrium play, we mean that it yields better payoffs

to both players for all times t ≥ t0 for some sufficiently large t0 > 0.
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off playing according to fictitious play rather than playing the (unique) Nash equilibrium

strategy. In the proof of the theorem we will make use of the following lemma.

Lemma 3.9. Let (A, B) be an n × n bimatrix game with unique, completely mixed Nash

equilibrium (EA, EB). Then for each of the first player’s strategies k, LA
k B

(⋂
i,k RA

i

)
\ RA

k

is non-empty. More precisely, LA
k is a ray from EB in the direction vk, such that any (n − 1)

of the n vectors v1, . . . , vn form a basis for the space {v ∈ Rn :
∑

i vi = 0}. The analogous

statement applies to LB
l B

(⋂
j,l RB

j

)
\ RB

l , l = 1, . . . , n.

Proof. Define the projection

π :

x ∈ Rn :
∑

i

xi = 1

→ Rn−1, π(x1, . . . , xn) = (x1, . . . , xn−1),

and note that π is invertible with inverse

π−1(y) = (y1, . . . , yn−1, 1 −
n−1∑
k=1

yk).

For q ∈ ΣB we have that
∑n

k=1 qk = 1 and therefore

(Aq)i − (Aq) j =

n∑
k=1

(aik − a jk)qk =

n−1∑
k=1

(aik − a jk − ain + a jn)qk + (ain − a jn),

and we define the affine map P : Rn−1 → Rn−1 by

Pl(x) =

n−1∑
k=1

(al,k − al+1,k − al,n + al+1,n)xk + (al,n − al+1,n),

for l = 1, . . . , n − 1 (that is, Pl(x) = A(π−1(x))l − A(π−1(x))l+1).

Recall from Lemma 1.3 that for (p, q) ∈ Σ, q = EB if and only if (Aq)i = (Aq) j for

all i, j, and p = EA if and only if (pB)i = (pB) j for all i, j. It follows that

P(x) = 0 if and only if x = π(EB).

In particular, the affine map P is invertible and there is a unique vector v1 ∈ {v ∈ Rn :∑
i vi = 0}, such that P(π(EB +v1)) = w1 B (−1, 0, . . . , 0)>. Since EB is in the interior of ΣB,

x1 = EB+s·v1 ∈ ΣB for sufficiently small s > 0, and we have that P(π(x1)) = (−s, 0, . . . , 0)>.

By the definition of P, this means that

(Ax1)1 < (Ax1)2 = (Ax1)3 = · · · = (Ax1)n.

75



Hence x1 ∈ LA
1 =

(⋂
k,1 RA

k

)
\ RA

1 . Note also that every x ∈ LA
1 is of the form EB + s · v1 for

some s > 0, that is, LA
1 is a ray from the point EB.

For 1 < k < n, let wk be the vector in Rn with (k−1)th and kth entries equal to 1 and

−1 respectively, and all other entries equal to 0. Then choose vk such that P(π(EB + vk)) =

wk. Again for sufficiently small s > 0, we get xk = EB + s · vk ∈ LA
k . Finally, for k = n, let

wk = (0, . . . , 0, 1) and proceed as above to get vn and xn = EB + vn ∈ LA
n .

Writing the affine map P as P(x) = Mx + b for some invertible matrix M ∈

R(n−1)×(n−1) and b ∈ Rn−1, we get

wk = P(π(EB + vk)) = P(π(EB)) + M(vk
1, . . . , v

k
n−1)> = M(vk

1, . . . , v
k
n−1)>, k = 1, . . . , n.

Since any n − 1 of the vectors

w1 =



−1

0

0
...

0


, w2 =



1

−1

0
...

0


, . . . , wn−1 =



0
...

0

1

−1


, wn =



0
...

0

0

1


are linearly independent and M is invertible, it follows that any n−1 of the vectors v1, . . . , vn

are linearly independent, as claimed.

The same argument applied to the matrix B> shows the analogous result for LB
l ,

l = 1, . . . , n, which finishes the proof. �

Proof of Theorem 3.8. Let A′ ∈ Rn×n, such that a′i j = ai j +c j for some c = (c1, . . . , cn) ∈ Rn.

Then for any q ∈ ΣB,

Ā′(q) = max
i

(
A′q

)
i = max

i

Aq +

n∑
j=1

c jq j ·


1
...

1




i

= Ā(q) + c · q. (3.1)

Observe that, restricted to RA
k , level sets of Ā are precisely the (n − 2)-dimensional

hyperplane pieces in ΣB orthogonal to ak, the kth row vector of A:

q − q̃ ⊥ ak ⇔ ak · q = ak · q̃⇔ max
j

(Aq) j = max
j

(Aq̃) j for q, q̃ ∈ RA
k .

So all level sets of Ā restricted to RA
k are parallel hyperplane pieces. Figure 3.1 illustrates

this situation for the case n = 3.
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Figure 3.1: (Proof of Theorem 3.8) Level sets for Ā restricted to each region RA
i are parallel

line segments in ΣB (in a 3 × 3 game).

By Lemma 3.9 we can choose n points P1, . . . , Pn ∈ ΣB such that

Pk ∈ LA
k =

⋂
i,k

RA
i

 \ RA
k .

Each point Pk is in the relative interior of the line segment LA
k ⊂ ΣB. This line segment

has endpoint EB and is adjacent to all of the regions RA
i , i , k. By the same lemma,

P1 − EB, . . . , Pn−1 − EB form a basis for {v ∈ Rn :
∑

k vk = 0}. Therefore, the vectors

P1, . . . , Pn form a basis for Rn.

It follows that one can choose c = (c1, . . . , cn) ∈ Rn, such that

c · P1 + Ā(P1) = · · · = c · Pn + Ā(Pn),

and hence by (3.1),

Ā′(P1) = · · · = Ā′(Pn).

Then level sets of Ā′ are boundaries of (n − 1)-dimensional simplices centred at EB (each

similar to the simplex with vertices P1, . . . , Pn).

Now we show that EB is a minimum for Ā′. The uniqueness of the completely

mixed Nash equilibrium implies that A is not the zero matrix. Therefore, there exists a

vector v = (v1, . . . , vn) ∈ Rn with
∑

k vk = 0, such that at least one of the entries of Av is

positive. Let r(t) = EB + t · v, t ≥ 0, be a ray from EB in ΣB. Then for t2 > t1 we get

Ā′(r(t2)) − Ā′(r(t1)) = max
j

(AEB + t2Av) j −max
j

(AEB + t1Av) j = (t2 − t1) max
j

(Av) j > 0.
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So, along some ray from EB, Ā′ is increasing. By the spherical structure of the level sets,

this implies that Ā′ is increasing along every ray from EB. So Ā′(EB) ≤ Ā′(q) for every

q ∈ ΣB with equality only for q = EB.

The same reasoning shows that one can choose d1, . . . , dn ∈ R and B′ ∈ Rn×n,

b′i j = bi j + di, such that B̄′(EA) ≤ B̄′(p) for every p ∈ ΣA with equality only for p = EA. �

The previous results, Theorem 3.8 and Proposition 3.6, assert that every game pos-

sesses a dynamically equivalent version, in which fictitious play payoff Pareto dominates

Nash equilibrium payoff. This shows that dynamical equivalence does not in general pre-

serve the global payoff structure of a game, since there are clearly games for which Pareto

dominance of fictitious play over Nash equilibrium does not hold a priori.

In the famous Shapley game (see (1.5) in Section 1.2.5) or variants of it (see (1.7)

in Section 1.3) fictitious play typically converges to a limit cycle, known as a Shapley

polygon, and usually the payoff along this polygon is greater than the Nash equilibrium

payoff in some parts of the cycle, and less in others. On average, this can be still preferable

for both players compared to playing Nash equilibrium, if they aim to maximise their time-

average payoffs. In a similar setting, this has been previously observed by Gaunersdorfer

and Hofbauer in [36]. We will investigate this for the family of games (1.7) in Section 3.2.1.

In fact, the proof of Theorem 3.8 shows that the unique, completely mixed Nash

equilibrium (EA, EB) can never be an isolated payoff-maximum, since there are always

directions from EB in ΣB and from EA in ΣA along which Ā and B̄ are non-decreasing.

Heuristically one would therefore expect that fictitious play typically improves upon Nash

equilibrium in at least parts of any limit cycle. In Section 3.2.2 we will demonstrate that

this need not always be the case: there are games in which fictitious play typically produces

a lower average payoff than Nash equilibrium.

3.2.1 An example family of games revisited

Here we consider the one-parameter family of 3 × 3 bimatrix games from (1.7), which can

be viewed as a generalisation of the Shapley game. In Section 1.3 we presented some of

the most important results from [90, 93] on the remarkable properties of its fictitious play

dynamics. Recall that the family is given by

Aβ =


1 0 β

β 1 0

0 β 1

 , Bβ =


−β 1 0

0 −β 1

1 0 −β

 , β ∈ (0, 1). (3.2)
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The unique Nash equilibrium of this game is EA = (EB)> = ( 1
3 ,

1
3 ,

1
3 ), which yields the

respective payoffs

uA(EA, EB) =
1 + β

3
and uB(EA, EB) =

1 − β
3

for players A and B. To check the hypothesis of Proposition 3.6, let q = (q1, q2, q3)> ∈ ΣB,

then

Ā(q) = max {q1 + βq3, q2 + βq1, q3 + βq2}

≥
1
3

((q1 + βq3) + (q2 + βq1) + (q3 + βq2))

=
1
3

(q1 + q2 + q3)(1 + β)

=
1 + β

3
= uA(EA, EB) = Ā(EB).

Moreover, equality holds if and only if

q1 + βq3 = q2 + βq1 = q3 + βq2,

which is equivalent to q1 = q2 = q3, that is, q = EB. We conclude that Ā(q) > Ā(EB) for

all q ∈ ΣB \ {EB}, and by a similar calculation, B̄(p) > B̄(EA) for all p ∈ ΣA \ {EA}. As a

corollary to Proposition 3.6 we get the following result.

Theorem 3.10. Consider the one-parameter family of bimatrix games (Aβ, Bβ) in (3.2) for

β ∈ (0, 1). Then any (non-stationary) orbit of fictitious play Pareto dominates constant

Nash equilibrium play in the long run, that is, for large times t we have

ûA(t) > uA(EA, EB) and ûB(t) > uB(EA, EB).

In fact, one can say more: there is a β ∈ (0, 1) such that fictitious play has an

attracting closed orbit (the so-called ‘anti-Shapley orbit’, see Theorem 1.44) along which

payoffs Pareto dominate the Nash equilibrium payoff at all times. In other words, both

players are receiving a higher payoff than at Nash equilibrium at any time along this orbit.

We omit the details of the proof: techniques developed by Krishna and Sjöström [57],

building on earlier work by Rosenmüller [83], can be used to analyse fictitious play along

this orbit, whose existence is guaranteed by Theorem 1.44. In particular, the times spent in

each region Ri j along the orbit can be worked out explicitly, which can be directly applied

to obtain average payoffs.
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Remark 3.11. An important equilibrium notion in game theory is that of a correlated equi-

librium, first introduced by Aumann [5, 6], which is defined as follows. A joint probability

distribution P = (pi j) over the joint strategy space S = S A × S B is a correlated equilibrium

for the bimatrix game (A, B) if∑
k

ai′k pik ≤
∑

k

aik pik and
∑

l

bl j′ pl j ≤
∑

k

bl j pl j

for all i, i′ ∈ S A and j, j′ ∈ S B. One interpretation of this notion is similar to that of

the coarse correlated equilibrium (see paragraph after Definition 3.1), with the notion of

‘(unconditional) regret’ replaced by the finer notion of ‘conditional regret’. If we think

of P as the empirical distribution of play up to a certain time for two players involved

in repeatedly or continuously playing a given game, then P is a correlated equilibrium if

neither player regrets not having played a strategy i′ (or j′) whenever she actually played i

(or j). In other words, the average payoff to player A would not be higher, if she would have

played i′ at all times when she actually played i throughout the history of play (assuming

her opponent’s behaviour unchanged), and the same for player B.

One can check that the set of Nash equilibria is always contained in the set of corre-

lated equilibria, which in turn is always contained in the set of coarse correlated equilibria.

In the game (Aβ, Bβ) in Theorem 3.10, the Nash equilibrium (EA, EB) is also the unique cor-

related equilibrium, which can be checked by direct computation. Hence our result shows

that in this case, fictitious play also improves upon correlated equilibria in the long run.

3.2.2 Fictitious play can be worse than Nash equilibrium play

We have seen that fictitious play can (and often does) improve upon Nash equilibrium

in terms of payoff. Moreover, we have shown that for any bimatrix game with unique,

completely mixed Nash equilibrium, linear equivalence can be used to obtain dynamically

equivalent examples in which fictitious play payoff Pareto dominates Nash equilibrium pay-

off. In this section we investigate the converse possibility of fictitious play having lower

payoff than Nash equilibrium. Again we restrict our attention to n × n games with unique,

completely mixed Nash equilibrium.

Let us define the sub-Nash payoff cones, the set of those mixed strategies of player

A, for which the best possible payoff to player B is not greater than Nash equilibrium payoff,

P−A = {p ∈ ΣA : max
i

(pB)i ≤ max
i

(EAB)i},

and similarly

P−B = {q ∈ ΣB : max
j

(Aq) j ≤ max
j

(AEB) j}.
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By adding suitable constants to the player’s payoff matrices we can assume without loss of

generality that uA(EA, EB) = uB(EA, EB) = 0. Then one can see that

P−A = (B>)−1(Rn
−) ∩ ΣA and P−B = A−1(Rn

−) ∩ ΣB,

where Rn
− denotes the quadrant of Rn with all coordinates non-positive, and by (B>)−1 and

A−1 we mean the pre-images under the linear maps B>, A : Rn → Rn. Therefore, P−A and P−B
are convex cones in ΣA and ΣB with apexes EA and EB respectively.

Now a fictitious play orbit is Pareto worse than Nash equilibrium if and only if it (or

its part for t ≥ t0 for some t0) is contained in the interior of P−A×P−B. This shows that a result

like Theorem 3.8 with the roles of Nash equilibrium and fictitious play reversed cannot hold:

if a game has a fictitious play orbit whose projections to ΣA and ΣB are not both contained in

some convex cones with apexes EA and EB, then for any linearly equivalent game, along this

orbit there are times at which one of the players enjoys higher payoff than Nash equilibrium

payoff. In order to find fictitious play orbits along which payoffs are permanently worse

than Nash equilibrium payoff, one therefore needs to find orbits contained in a halfspace

(whose boundary plane contains the Nash equilibrium). The following lemma ensures that

one can then obtain a linearly equivalent game with P−A × P−B containing this orbit.

Lemma 3.12. Let (A, B) be any n × n bimatrix game with unique, completely mixed Nash

equilibrium (EA, EB). Then for any convex cones CA ⊂ ΣA, CB ⊂ ΣB with apexes EA and

EB respectively, and opening angles in [0, π), there exists a linearly equivalent game (Ã, B̃),

such that P−A = C1 and P−B = C2.

The proof of this lemma follows from the proof of Theorem 3.8. Note that in the

proof of Theorem 3.8, to any given game we constructed a linearly equivalent game with

P−A = P−B = ∅.

By Lemma 3.12, to find an example of a game with an orbit which is Pareto worse

than Nash equilibrium, it suffices to find a game with an orbit whose projections to ΣA and

ΣB are completely contained in convex cones with apexes EA and EB respectively. One can

then construct a linearly equivalent game, for which this orbit is actually contained in the

sub-Nash payoff cones. We will demonstrate one such example in the 3 × 3 case, which

we obtained by numerically randomly generating 3 × 3 games and testing large numbers of

initial conditions to detect orbits of the desired type.

Observe that by convexity of the preference regions RA
i , a halfspace in ΣB whose

boundary line contains the (unique, completely mixed) Nash equilibrium contains at most

two of the three rays LA
i , i = 1, 2, 3. The same holds for a halfspace in ΣA and the rays LB

j ,

j = 1, 2, 3. Hence an orbit entirely contained in such halfspace never crosses at least one of

these lines for each player.
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Example 3.13. Let the bimatrix game (A, B) be given by

A =


−1.353259 −1.268538 2.572738

0.162237 −1.800824 1.584291

−0.499026 −1.544578 1.992332

 , B =


−1.839111 −2.876997 −3.366031

−4.801713 −3.854987 −3.758662

6.740060 6.590451 6.898102

 .
This bimatrix game has a unique Nash equilibrium (EA, EB) with

EA ≈ (0.288, 0.370, 0.342), EB ≈ (0.335, 0.327, 0.338)>.

The matrices A and B are chosen in such a way that the Nash equilibrium payoffs are both

normalised to zero: uA(EA, EB) = uB(EA, EB) = 0. Numerical simulations suggest that

fictitious play has a periodic orbit as a stable limit cycle, which attracts almost all initial

conditions. This trajectory forms an octagon in the four-dimensional space Σ = ΣA × ΣB, it

is depicted in Figure 3.2. The orbit follows an 8-periodic itinerary of the form

(2, 1)→ (2, 2)→ (3, 2)→ (3, 3)→ (1, 3)→ (1, 2)→ (1, 1)→ (3, 1)→ (2, 1).

Note that the first player’s best response never changes from 1 to 2, or vice versa. Sim-

ilarly, for player B the best response never directly changes between 1 and 3 without an

intermediate step through 2. Moreover, it can be seen from Figure 3.2 that the projections

of the periodic orbit to ΣA and ΣB lie in half planes whose boundaries contain the points EA

and EB respectively. By Lemma 3.12 this allows us to choose the matrices A and B such

that this orbit lies completely in P−A × P−B, that is, such that the payoffs to both players are

permanently worse than Nash equilibrium payoff. Figure 3.3 shows the (negative) payoffs

to both players along several periods of the orbit and the higher (zero) Nash equilibrium

payoff.

This example has been obtained through numerical experimentation. The difficulty

in finding an example of a periodic orbit with the key property of lying in a convex cone with

apex at the unique, completely mixed Nash equilibrium seems to suggest that such examples

are relatively rare. For most games with unique, completely mixed Nash equilibrium, payoff

along typical fictitious play orbits either Pareto dominates equilibrium payoff or at least

improves upon it along parts of the orbit. We formulate the following two conjectures.

Conjecture 3.14. Bimatrix games with unique, completely mixed Nash equilibrium, where

Nash equilibrium Pareto dominates typical fictitious play orbits are ‘rare’. To be precise,

within the space of all n × n games with entries in [0, 1], those where typical fictitious play

orbits are Pareto dominated by Nash equilibrium (in terms of payoff) form a set with at most

Lebesgue measure 0.01.
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Figure 3.2: Periodic orbit whose projections to ΣA (left) and ΣB (right) are contained in con-
vex cones with apexes EA and EB respectively. The dashed lines indicate the indifference
lines of the players. Their intersections are the projections of the unique Nash equilibrium,
EA and EB. For better visibility, the bottom row shows a zoomed version of the periodic
orbit.

Conjecture 3.15. For bimatrix games with unique, completely mixed Nash equilibrium

and certain transition combinatorics (see Chapter 2), Nash equilibrium does not Pareto

dominate typical fictitious play orbits. In particular, this is the case if BRA(e j) , BRA(e j′)

for all j , j′ and BRB(ei) , BRB(ei′) for all i , i′.

3.3 Concluding remarks on fictitious play performance

Conceptually, the overall observation is that playing Nash equilibrium might not be an

advantage over playing according to some learning algorithm (such as fictitious play) in a

wide range of games, in particular in many common examples of games occurring in the

literature. Even in cases where playing fictitious play does not dominate Nash equilibrium

at all times, it might still be preferable in terms of time-averaged payoff. In contrast, the

previous section shows that there are examples in which Nash equilibrium indeed Pareto

dominates fictitious play orbits, but the restrictive nature of the example suggests that this

situation is quite rare.

Conversely, the discussion also shows that certain notions of game equivalence (for

instance, linear, best response or better response equivalence, see Section 1.1.2), which are

popular in the literature on learning dynamics, often do not preserve essential features of

the payoff structure of games, even though they preserve Nash equilibria (and other notions
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Figure 3.3: Payoff along 10 periods of the periodic orbit contained in P−A × P−B. Player A’s
payoff oscillates around −0.5, player B’s payoff around −0.25. Nash equilibrium payoff is
zero to both players.

of equilibrium) and conditional preferences of the players. While some dynamics (in partic-

ular, best response or fictitious play dynamics) are invariant under all of these equivalence

relations, the actual payoffs along their orbits and the average payoff comparison of differ-

ent orbits can strongly depend on the chosen representative bimatrix, as becomes apparent

from Theorem 3.8. This is to some extent analogous to the situation in the classical example

of the ‘prisoner’s dilemma’ given by the bimatrix

A =

3 0

5 1

 , B =

3 5

0 1

 .
Under linear equivalence, this corresponds to the bimatrix game

Ã =

0 0

2 1

 , B̃ =

0 2

0 1

 ,
which shares all essential features such as equilibria, best response structures, etc with the

prisoner’s dilemma. Both games are dynamically identical, with all fictitious play orbits

converging along straight lines to the unique pure Nash equilibrium (2, 2). However, the
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second game does not constitute a prisoner’s dilemma in the classical sense: whereas in

the prisoner’s dilemma the Nash equilibrium is Pareto dominated by the (dynamically ir-

relevant) strategy profile (1, 1), in the second game this is not the case and no ‘dilemma’

occurs.

Theorem 3.8 can be interpreted in a similar vain: linear equivalence turns out to

be sufficiently coarse, so that by changing the representative bimatrix inside an equivalence

class, one can create certain regions in Σ in which payoff is arbitrarily high in comparison to

the payoff at the unique Nash equilibrium. Since orbits of fictitious play remain unchanged,

this can be done in such a way that a given periodic orbit lies completely or predominantly

in these desired ‘high payoff portions’ of Σ. On the other hand, it can be seen from the

proof that the conditions for this to happen are not at all exceptional. Consequently, it could

be argued that in many games of interest the assumption that Nash equilibrium play is the

most desirable outcome might not hold and a more dynamic view of ‘optimal play’ might

be reasonable.
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Chapter 4

Non-self maps of the plane

In this chapter we study planar homeomorphisms, a field in which many important inves-

tigations and results were started by Brouwer at the beginning of the twentieth century. In

the context of this thesis, the importance of this class of maps lies in the fact that, as we

have seen in Chapters 1 and 2, certain Poincaré maps of the fictitious play flow turn out to

be planar homeomorphisms1 and understanding of their fixed, periodic and recurrent points

is crucial to the study of the global dynamics.

The main result of this chapter is a fixed point theorem deduced from classical

results of Brouwer and, more recently, Franks. The crucial difference between our result

and the classical versions is that in our result we assume a non-self map of a compact subset

of the plane instead of a homeomorphism of the whole plane.

The contents of this chapter are published as [75].

4.1 Modern results on Brouwer homeomorphisms

Since Brouwer’s proof of his plane translation theorem [20], many alternative proofs of

the theorem and its key ingredient, the translation arc lemma, have been given (for several

more recent ones, see Brown [23], Fathi [28], Franks [30]). The following is a concise

formulation of its main statement.

Theorem 4.1 (Barge and Franks [7]). Suppose f : R2 → R2 is an orientation-preserving

homeomorphism of the plane. If f has a periodic point then it has a fixed point.

Slightly stronger versions assume a weaker form of recurrence, for example the

existence of periodic disk chains (Barge and Franks [7]), to obtain the existence of fixed

points.
1More precisely, the first return maps of the Hamiltonian flow induced by fictitious play in 3 × 3 zero-sum

games with unique, completely mixed Nash equilibrium have this property, see Sections 1.2.6, 2.1.6 and 2.2.
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The point of this chapter is to show that an analogue of Theorem 4.1 also holds for

a homeomorphism which is merely defined on a compact subset of a surface. This situation

could arise when considering a restriction of a self-map of a surface. Our main theorem is

the following.

Theorem 4.2. Let X ⊂ R2 be a compact, simply connected, locally connected subset of the

real plane and let f : X → Y ⊂ R2 be a homeomorphism isotopic to the identity on X. Let

C be a connected component of X ∩ Y. If f has a periodic orbit in C then it also has a fixed

point in C.

In fact, as a corollary we will obtain a slightly stronger result.

Corollary 4.3. Let X ⊂ R2 and f : X → Y be as in Theorem 4.2 and let C be a connected

component of X ∩ Y. If f has no fixed point in C, then the orbit of every point x ∈ C

eventually leaves C, that is, there exists n = n(x) ∈ N such that f n(x) < C.

In particular, if X ∩Y is connected and f has no fixed points, then the non-escaping

set of f is empty:

{x ∈ X : f n(x) ∈ C ∀n ∈ N} = ∅.

To prove these results, in Section 4.2 we will first consider the case of an orientation-

preserving homeomorphism f : D → E ⊂ R2 of a Jordan domain D into the plane. In this

special case, the statement will be first proved for D∩E connected, by suitably extending f

to the real plane and applying Theorem 4.1. We will then proceed to show that the connect-

edness assumption can be removed if one formulates the result more precisely, taking into

account the connected components of D ∩ E individually. Finally, in Section 4.3, we will

deduce the general case of Theorem 4.2 by reducing the problem to the Jordan domain case.

In Section 4.5 we will discuss the assumptions of our results and questions about possible

extensions.

4.2 Non-self maps of Jordan domains

A set D ⊂ R2 is a Jordan domain, if it is a compact set with boundary ∂D a simple closed

curve (Jordan curve). By Schoenflies’ theorem, Jordan domains are precisely the planar

regions homeomorphic to the (closed) disk. Here we assume that all Jordan curves are

endowed with the counter-clockwise orientation. For a Jordan curve C and x, y ∈ C, we

denote by (x, y)C (respectively [x, y]C) the open (respectively closed) arc in C from x to y

according to this orientation.

For X ⊂ R2, we say that x ∈ X is a fixed point for the map f : X → R2 if f (x) = x.

We say that x ∈ X is a periodic point for f if there exists n ∈ N such that f n(x) = x. This of
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course requires that the entire orbit of x, orb(x) = {x = f n(x), f (x), . . . , f n−1(x)}, is included

in X.

In analogy to Theorem 4.1, we will prove the following result.

Theorem 4.4. Let D ⊂ R2 be a Jordan domain and let f : D → E ⊂ R2 be an orientation-

preserving homeomorphism. Assume that D∩E is connected. If f has a periodic point then

it also has a fixed point.

Remark 4.5. All periodic or fixed points of f : D→ E necessarily lie in D ∩ E.

The strategy of our proof is to show that a homeomorphism f : D → E as in The-

orem 4.4 and without fixed points can be extended to an orientation-preserving fixed point

free homeomorphism F : R2 → R2 (a Brouwer homeomorphism). The result then follows

from classical results such as Theorem 4.1.

Our first step is to consider the structure of the set D ∩ E. It is known that each

connected component of the intersection of two Jordan domains is again a Jordan domain

(see, for example, Kerékjártó [55, p.87]). We need the following more detailed statement

(Bonino [19, Proposition 3.1], proved in Le Calvez and Yoccoz [60, Part 1]).

Proposition 4.6. Let U,U′ be two Jordan domains containing a point o ∈ U ∩U′ such that

U 1 U′ and U′ 1 U. Denote the connected component of U ∩ U′ containing o by U ∧ U′.

(1) There is a partition

∂(U ∧ U′) =
(
∂(U ∧ U′) ∩ ∂U ∩ ∂U′

)
∪

⋃
i∈I

αi ∪
⋃
j∈J

β j, where

• I, J are non-empty, at most countable sets,

• for every i ∈ I, αi = (ai, bi)∂U is a connected component of ∂U ∩ U′,

• for every j ∈ J, β j = (c j, d j)∂U′ is a connected component of ∂U′ ∩ U.

(2) For j ∈ J, U ∧ U′ is contained in the Jordan domain bounded by β j ∪ [d j, c j]∂U .

(3) ∂(U ∧ U′) is homeomorphic to ∂U, and hence is itself a Jordan curve.

(4) Three points a, b, c ∈ ∂(U ∧ U′) ∩ ∂U (respectively ∂(U ∧ U′) ∩ ∂U′) are met in

this order on ∂U (respectively ∂U′) if and only if they are met in the same order on

∂(U ∧ U′).

We consider a Jordan domain D ⊂ R2 and a homeomorphism f : D→ E = f (D) ⊂

R2. If D ∩ E is connected, it follows that both D ∩ E and D ∪ E are Jordan domains (see

Figure 4.1). With Proposition 4.6 in mind, we obtain the following lemma; we delay its

proof until Section 4.4.
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Figure 4.1: (Proposition 4.6) Partition of ∂(U ∧ U′) in the case when U ∩ U′ is connected.

Lemma 4.7. Let D, E ⊂ R2 be Jordan domains such that D 1 E, E 1 D and D ∩ E is

non-empty and connected. Then there exists a partition of R2 \ int(D ∩ E) into arcs, each

of which connects a point on ∂(D ∩ E) to ∞ and intersects each of ∂D and ∂E in precisely

one point.

Furthermore, there exist continuous functions λD : R2 \ int(D)→ R≥0 and λE : R2 \

int(E) → R≥0, which are strictly monotonically increasing along the arcs of the partition

and such that λD|∂D ≡ 0 and λE |∂E ≡ 0.

Remark 4.8. For a partition arc γ connecting some point p ∈ ∂D (or ∂E) to∞, the function

λD (λE) can be viewed as providing a notion of arc length (assigning to each x ∈ γ the

length of the subarc [p, x] ⊂ γ). It is finite for every x ∈ γ, even if the usual (Euclidean) arc

length `([p, x]) is not.

The partition of R2 \ int(D∩E) obtained this way allows us to prove our key propo-

sition, from which the main result of this section will follow as a corollary.

Proposition 4.9. Let D ⊂ R2 be a Jordan domain and f : D → E ⊂ R2 an orientation-

preserving homeomorphism with no fixed points and such that D ∩ E is non-empty and

connected. Then there exists a fixed point free orientation-preserving homeomorphism

F : R2 → R2 extending f (that is, F|D ≡ f ).

Proof. Since f has no fixed points, by Brouwer’s fixed point theorem we get that E 1 D

and D 1 E. Therefore, we can apply Lemma 4.7 to obtain a partition P of R2 \ int(D ∩ E)

into arcs, each connecting a point in ∂(D ∩ E) with ∞ and intersecting each of ∂D and ∂E

in exactly one point.

For x ∈ R2 \ int(D ∩ E), we denote by Lx ∈ P the partition element containing the

point x, and let πD(x) = Lx ∩ ∂D and πE(x) = Lx ∩ ∂E. From the construction of P in the

proof of Lemma 4.7 it is clear that πD : R2 \ int(D∩E)→ ∂D and πE : R2 \ int(D∩E)→ ∂E

are continuous.
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Figure 4.2: (Proof of Proposition 4.9) Extension F : R2 → R2 of f : D → f (D) maps each
arc Lx, x ∈ ∂D, into the arc L f (x).

We now construct F : R2 → R2 as an extension of f in such a way, that each arc

Lx \ D, x ∈ ∂D, is mapped into the arc L f (x). For x ∈ D we define F(x) = f (x), and for

x < D we define F(x) to be the unique point y ∈ L f (πD(x)) \ E such that λE(y) = λD(x) (see

Figure 4.2). Then, by the construction of P and continuity of πD and πE , F is a continuous

extension of f .

The map F is an orientation-preserving homeomorphism of R2; its inverse can be

obtained the same way by swapping the roles of D, f and E, f −1. Moreover, F has no fixed

points in D since F|D ≡ f . On the other hand, suppose p ∈ R2 \ D with F(p) = p. Then

F(Lp \ D) ⊂ Lp. Since λD(p) = λE(F(p)) = λE(p), we get πD(p) = πE(p), and therefore

f (πD(p)) = πD(p), a contradiction. Hence F is fixed point free. �

Combining Proposition 4.9 and Theorem 4.1, we now obtain Theorem 4.4.

Next, we formulate a somewhat more general form of Theorem 4.4, by removing the

restriction of D∩ f (D) to be connected, and instead making an assertion for each individual

connected component of this set. This version of the result turns out to be much more useful

in its application to more general compact sets in Section 4.3.

Theorem 4.10. Let D ⊂ R2 be a Jordan domain and f : D → E ⊂ R2 an orientation-

preserving homeomorphism. Let C be a connected component of D∩ E. If f has a periodic

orbit in C then it also has a fixed point in C.

Proof. We show that this more general setting can be reduced to the one in Theorem 4.4.

Let {Ci} be the collection of connected components of E \C and let γi = C ∩Ci, which is a

closed subarc of ∂D (a connected component of C ∩ ∂D).
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Figure 4.3: (Proof of Theorem 4.10) The Jordan domains D (white), E =
(⋃

i Ci
)
∪C (light

grey) and Ẽ =
(⋃

i C̃i
)
∪ C (dark grey). The C̃i are pairwise disjoint, the homeomorphism

g : E → Ẽ maps each Ci homeomorphically to C̃i and fixes C pointwise. Moreover, Ẽ∩D =

C is connected.

Each Ci is a Jordan domain bounded by the union of γi and a closed subarc of

∂E. Let {C̃i} be another collection of disks C̃i ⊂ R2 \ D such that C̃i ∩ D = γi and the C̃i

are pairwise disjoint. (Note that by Schoenflies’ theorem we can assume without loss of

generality that D is the closed standard unit disk D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Since the

γi are pairwise disjoint, letting C̃i be the round halfdisk over ∂D centred at the midpoint of

γi gives a collection of pairwise disjoint disks as required, see Figure 4.3.)

By Schoenflies’ theorem, for each i there exists a homeomorphism gi : Ci → C̃i and

we can assume that gi is the identity on γi. Noting that E =
(⋃

i Ci
)
∪C, let Ẽ =

(⋃
i C̃i

)
∪C

and define a homeomorphism g : E → Ẽ by gluing together the identity on C and the

homeomorphisms gi:

g(y) =

y if y ∈ C,

gi(y) if y ∈ Ci.

Finally, define the homeomorphism f̃ = g ◦ f : D → Ẽ. By construction, f̃ and f

coincide on f −1(C), and if f has a periodic orbit in C, so does f̃ . Since f̃ (D)∩D = Ẽ∩D = C

is connected, we can apply Theorem 4.4 to get that f̃ has a fixed point in C. Hence f has a

fixed point in C. �

Corollary 4.11. Let f : D → E be as in Theorem 4.10 and C a connected component of

D ∩ E. If f has no fixed point in C, then the non-escaping set of f in C is empty:

{x ∈ C : f n(x) ∈ C ∀n ∈ N} = ∅.
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Proof. By repeating verbatim the argument in the proof of Theorem 4.10, we can construct

a homeomorphism f̃ : D→ Ẽ, which coincides with f on C and such that Ẽ ∩ D = C.

Observe that f̃ is fixed point free, so we can apply Proposition 4.9 to get an ex-

tension of f̃ to a fixed point free orientation-preserving homeomorphism F : R2 → R2.

By [30, Corollary 1.3], F is a so-called free homeomorphism, that is, for any topological

disk U ⊂ R2 we have

F(U) ∩ U = ∅ ⇒ Fi(U) ∩ F j(U) = ∅ whenever i , j. (4.1)

Suppose f has a point x ∈ C with f n(x) ∈ C for all n ∈ N. Then f n(x) = Fn(x)

for all n ∈ N and the forward orbit of x has an accumulation point, Fnk (x) → x0 ∈ C as

k → ∞. A sufficiently small neighbourhood U of x0 then satisfies F(U)∩U = ∅ but clearly

Fnk+1−nk (U) ∩ U , ∅ for sufficiently large k, contradicting (4.1). Hence such point never

escaping C does not exist. �

4.3 Non-self maps for compact simply connected planar sets

In this section we will generalise the results of the previous section to non-self maps of

compact, simply connected, locally connected sets in the real plane (also known as non-

separating Peano continua). Note that in our terminology simply connected always implies

connected.

We denote the Riemann sphere by Ĉ. If X ⊂ Ĉ is compact, connected and non-

separating, then its complement U = Ĉ \ X is simply connected (an open set U ⊂ Ĉ is

simply connected if and only if both U and Ĉ \ U are connected).

The classical Riemann mapping theorem states that if U ( C is non-empty, simply

connected and open, then there exists a biholomorphic map from U onto the open unit disk

D = {z ∈ C : ‖z‖ < 1}, known as the Riemann map. We will make use of the following

stronger result by Carathéodory (see [63, Theorem 17.14]).

Theorem 4.12 (Carathéodory’s theorem). If U ( Ĉ is non-empty, simply connected and

open, Ĉ \ U has at least two points, and additionally ∂U (or Ĉ \ U) is locally connected,

then the inverse of the Riemann map, φ : D → U, extends continuously to a map from the

closed unit disk D onto U.

As in the case of Jordan domains, we will need a requirement on the homeomor-

phisms to be orientation-preserving. To make sense of this notion for more general subsets

of the plane, we cite the following result, simplified by our assumption of a non-separating

and locally connected set (see also Oversteegen and Tymchatyn [77]).
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Theorem 4.13 (Oversteegen and Valkenburg [78]). Let X ⊂ Ĉ be compact, simply con-

nected and locally connected, and f : X → Y ⊂ Ĉ a homeomorphism. Then the following

are equivalent:

(1) f is isotopic to the identity on X;

(2) there exists an isotopy F : Ĉ × [0, 1]→ Ĉ such that F0 = idĈ and F1|X = f ;

(3) f extends to an orientation-preserving homeomorphism of Ĉ;

(4) if U = Ĉ \ X and V = Ĉ \ Y, then f induces a homeomorphism f̂ from the prime end

circle of U to the prime end circle of V which preserves the circular order.

To explain assertion (4) in the above theorem, let φ : D → U and ψ : D → V be the

extended inverse Riemann maps given by Carathéodory’s theorem, and denote S 1 = ∂D.

Then the homeomorphism f̂ : S 1 → S 1 is said to be induced by f , if

ψ|S 1 ◦ f̂ = f |∂U ◦ φ|S 1 .

More details can be found in [78], for an introduction to Carathéodory’s theory of prime

ends the reader is referred to Milnor’s book [63, Chapter 17].

Furthermore, we will make use of the following notation: For ε > 0, we denote the

closed ε-neighbourhood of a set X ⊂ R2 by

Xε = {z ∈ R2 : inf
x∈X
‖x − z‖ ≤ ε}.

In the proof of our main theorem, we will consider ε-neighbourhoods of disconnected com-

pact sets. A key fact we need is that any two given connected components of such a set are

separated by the ε-neighbourhood of the set, if ε > 0 is chosen sufficiently small. This is

the following technical lemma, whose proof can be found in Section 4.4.

Lemma 4.14. Let X be a compact subset of Rn, n ∈ N. Let C = {Ci}i∈I be the collection of

connected components of X and assume |C| ≥ 2. Let C,C′ ∈ C be two distinct connected

components. Then for ε > 0 sufficiently small, C and C′ lie in two distinct connected

components of Xε.

We are now ready to prove our main results.

Proof of Theorem 4.2. Let C be a connected component of X∩Y which contains a periodic

orbit of f . We will prove that f has a fixed point in C. The strategy of the proof is to

construct Jordan-domain neighbourhoods of X and Y and to extend f to a homeomorphism

between these neighbourhoods, so that Theorem 4.10 can be applied to the extension. The
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existence of a fixed point for the extension will then be shown to imply the existence of a

fixed point for f in C.

For fixed ε > 0, we first construct a closed neighbourhood Nε of X with bound-

ary Γ = ∂Nε a Jordan curve such that Nε \ X has a foliation {γz}z∈Γ with the following

properties:

• each γz is an arc connecting the point z ∈ Γ with a point x(z) ∈ ∂X;

• γz ∩ ∂X = {x(z)} and γz ∩ Γ = {z} for each z ∈ Γ;

•
⋃

z∈Γ γz = Nε \ X;

• if z , z′, then either γz ∩ γz′ = ∅, or x(z) = x(z′) and γz ∩ γz′ = {x(z)} ⊂ ∂X;

• each arc γz lies within an ε-ball centred at its basepoint x(z) ∈ ∂X: γz ⊂ Bε(x(z)).

Observe that by the last property, Nε is included in the ε-neighbourhood Xε of X.

We identify R2 = C and C ⊂ Ĉ in the usual way and denote U = Ĉ \ X. Then U

satisfies the hypotheses of Theorem 4.12, so there exists a continuous map φ : D → U (the

extended inverse Riemann map), whose restriction to the open unit disk D is a conformal

homeomorphism from D to U and φ(∂D) = ∂U. The map φ can be chosen such that

φ(0) = ∞. Since D is compact, φ is uniformly continuous, so we can find δ = δ(ε) > 0 such

that for all x, y ∈ D with ‖x − y‖ < δ, ‖φ(x) − φ(y)‖ < ε.

Assume without loss of generality that δ < 1 and set Aδ = {x ∈ C : 1 − δ ≤ ‖x‖ ≤ 1}

and Nε = φ(Aδ)∪ X. Then Nε is a closed neighbourhood of X, whose boundary Γ = ∂Nε =

φ({x ∈ D : ‖x‖ = 1 − δ}) is a Jordan curve. We can then construct the foliation {γz}z∈Γ of

Nε \ X by taking the images of radial lines in Aδ (see Figure 4.4):

γz = φ({r · v : 1 − δ ≤ r ≤ 1}), where v =
φ−1z
‖φ−1z‖

.

All the required properties of Nε and its foliation {γz} then follow because φ maps

Aδ \ ∂D bijectively and uniformly continuously onto Nε \ X; in particular, the last required

property follows by the choice of δ = δ(ε).

Next, since f is a homeomorphism, Y = f (X) is simply connected, compact and

also locally connected (see [63, Theorem 17.15]). Hence, with V = Ĉ \ Y and φ : D → V

the corresponding extended inverse Riemann mapping, we can repeat the same construction

as before to obtain a closed neighbourhood Mε of Y , such that Θ = ∂Mε is a Jordan curve

and {θz} is a foliation of Mε \ X with the same properties as {γz}.

By choosing δ > 0 small enough such that both constructions work with this given

value, we get that Nε = X ∪ φ(Aδ) and Mε = Y ∪ ψ(Aδ). Denote by {ls : s ∈ S 1} the
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Figure 4.4: (Proof of Theorem 4.2) The extended inverse Riemann map φ : D→ Ĉ \ int(X)
maps the annulus Aδ = {x ∈ C : 1 − δ ≤ ‖x‖ ≤ 1} onto Nε \ int(X) such that ∂D is mapped
onto ∂X. Each leaf γz of the foliation of Nε \ int(X) is the image under φ of a radial line
segment ls ⊂ Aδ.

foliation of Aδ by radial lines such that γz = φ(ls) for z = φ((1 − δ) · s) and θz′ = ψ(ls) for

z′ = ψ((1 − δ) · s).

From Theorem 4.13 we get that f induces a homeomorphism f̂ : S 1 → S 1 such that

ψ|S 1 ◦ f̂ = f |∂U ◦ φ|S 1 .

Hence we can extend f : X → Y to Fε : Nε → Mε by mapping each arc γz ⊂ Nε \ X to the

corresponding arc θz′ ⊂ Mε \ X. More precisely, let H : Aδ → Aδ be the homeomorphism

which maps the radial line segment ls linearly to the radial line segment l f̂ (s) (that is, in

polar coordinates H = id |[1−δ,1] × f̂ ). Then define the homeomorphic extension of f to Nε

by setting

Fε(x) =

 f (x) if x ∈ X,

ψ ◦ H ◦ φ−1(x) if x ∈ Nε \ X.

Note that for 0 < ε′ < ε, we can repeat the above construction to obtain Jordan domains

Nε′ and Mε′ and a homeomorphism Fε′ : Nε′ → Mε′ , and moreover Fε(x) = Fε′(x) for all

x ∈ Nε′ ⊂ Nε.

Every connected component of X ∩ Y is a subset of a connected component of

Nε ∩ Mε. Let Kε be the connected component of Nε ∩ Mε which contains C.

Claim 1. Fε′ has a fixed point in Kε′ for every ε′ ∈ (0, ε].

This follows from the main result of the previous section: the periodic point for f

in C is also a periodic point for Fε′ in Kε′ . By Theorem 4.10, Fε′ has a fixed point in Kε′ .

Claim 2. Fε has a fixed point in Kε ∩ (X ∩ Y).

By Claim 1 and the fact that for 0 < ε′ < ε, Fε′ is the restriction of Fε, Fε has a
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sequence of fixed points (pk)k∈N such that pk ∈ Nε/k ∩ Mε/k. By passing to a convergent

subsequence, we get that pk → p as k → ∞, with p ∈ Kε∩ (X∩Y) and Fε(pk) = Fε/k(pk) =

pk. By continuity Fε(p) = p, which proves the claim.

Claim 3. Fε has a fixed point in C.

By Claim 2 we know that Fε (and hence Fε′ for ε′ ∈ (0, ε]) possesses a fixed point

p ∈ Kε∩ (X∩Y). If p < C, then p lies in another connected component of Kε∩ (X∩Y), say

C′. We can now apply Lemma 4.14 to Kε ∩ (X ∩ Y) and its connected components. Since

Nε′ ⊆ Xε′ and Mε′ ⊆ Yε′ , we obtain that for ε′ > 0 sufficiently small, p < Kε′ . By again

applying Theorem 4.10 and Claim 2, we get that Fε′ has a fixed point p′ ∈ Kε′ ∩ (X ∩ Y),

which is also a fixed point for Fε.

We can iterate this argument and obtain a sequence of Fε-fixed points (pk)k∈N such

that pk ∈ K1/k ∩ (X ∩ Y). As in the proof of the previous claim, by passing to a convergent

subsequence, pk → p as k → ∞, we get an Fε-fixed point p ∈ Kε ∩ (X ∩ Y). If p lies in a

connected component of Kε ∩ (X ∩ Y) distinct from C, then, by Lemma 4.14, p < Kε′ for

sufficiently small ε′. But by construction, p ∈ Kε′ for all ε′ ∈ (0, ε], so p ∈ C, finishing the

proof of Claim 3.

Claim 3 implies that f has a fixed point in C, and Theorem 4.2 is proved. �

Proof of Corollary 4.3. If C is a connected component of X ∩ Y which contains a point x

such that f n(x) ∈ C for all n ∈ N, then exactly as in the proof of Theorem 4.2, we can

construct an extension F of f to a closed neighbourhood Nε of X, for small ε > 0. Using

Corollary 4.11 instead of Theorem 4.10, we get that the extension has a fixed point. The

same argument then shows that one such fixed point lies in C, as required. �

4.4 Proofs of Lemmas 4.7 and 4.14

Proof of Lemma 4.7. We apply Proposition 4.6 with U = D and U′ = E. The set D ∩ E is

a Jordan domain and by (1), its boundary curve consists of the (pairwise disjoint) sets

• ∂D ∩ ∂E (isolated points or closed arcs),

• αi ⊂ ∂D, i ∈ I (open arcs), and

• β j ⊂ ∂E, j ∈ J (open arcs).

It also follows from Proposition 4.6, that E \ D is the union of Jordan domains Ai bounded

by αi ∪ [ai, bi]∂E and D \ E is the union of Jordan domains B j bounded by β j ∪ [c j, d j]∂D

(see Figure 4.1).
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By Schoenflies’ theorem, each Jordan domain Ai is homeomorphic to the closed

unit disk D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Let hi : Ai → D be such homeomorphism. We

can assume hi(ai) = (−1, 0) and hi(bi) = (1, 0). Then the partition of D into vertical line

segments ls B {(x, y) ∈ D : x = s}, s ∈ (−1, 1), gives rise to a partition {h−1
i (ls) : s ∈ (−1, 1)}

of Ai into closed arcs, each connecting a point of αi to a point of (ai, bi)∂E . Similarly, one

can obtain a partition of B j into closed arcs connecting points on β j to points on (c j, d j)∂D.

Note that D ∪ E is also a Jordan domain and that the (ai, bi)∂E , i ∈ I, and (c j, d j)∂D,

j ∈ J, together with ∂D ∩ ∂E form a partition of its boundary. Thus we obtained a collec-

tion of (pairwise disjoint) closed arcs, each connecting precisely one point of ∂(D ∩ E) to

precisely one point of ∂(D ∪ E). Denote the arc corresponding to z ∈ ∂(D ∪ E) by lz, and

let lz = {z} whenever z ∈ ∂D ∩ ∂E.

Since D∪ E is a Jordan domain, we can again apply Schoenflies’ theorem to obtain

a homeomorphism h : R2 \ int(D∪ E)→ R2 \D. Let rθ be the radial line segment in R2 \D

expressed in polar coordinates as rθ = {(r, φ) : r ≥ 1, φ = θ}. Then {rθ : θ ∈ [0, 2π)}

forms a partition of R2 \ D, which can be pulled back to a partition {h−1(rθ) : θ ∈ [0, 2π)}

of R2 \ int(D ∪ E). This partition consists of (pairwise disjoint) arcs mz, each connecting a

point on z ∈ ∂(D ∪ E) to∞.

Combining the above, we get that each point z ∈ ∂(D ∪ E) is the endpoint of two

uniquely defined arcs lz and mz (lz possibly being the trivial arc {z}). Let Lz B lz ∪ mz,

which is an arc connecting a point on ∂(D ∩ E) to ∞, for every z ∈ ∂(D ∪ E). Then

{Lz : z ∈ ∂(D ∪ E)} is a partition of R2 \ int(D ∩ E) with the desired properties.

At last, we construct a continuous function λD : R2\int(D)→ R≥0 strictly monoton-

ically increasing along each arc Lz and such that λD|∂D ≡ 0; the function λE : R2 \ int(D)→

R≥0 can be constructed similarly.

For x ∈ R2 \ int(D), let z be the unique point in ∂(D ∪ E) such that x ∈ Lz and let

{p} = Lz ∩ ∂D. If p < E, then p = z and the arc [p, x] ⊂ Lz is contained in R2 \ int(D ∪ E).

Then h([p, x]) is a straight line from h(p) to h(x) and we set λD(x) = `(h([p, x])), where `

denotes the usual (Euclidean) arc length on arcs in R2. If p ∈ E and x ∈ E, [p, x] ⊂ Lz

lies in a component Ai of E \ D, and we set λD(x) = `(hi([p, x])). Finally, if p ∈ E and

x < E, [p, x] is the union of the arcs [p, z] ⊂ Lz and [z, x] ⊂ Lz, and we set λD(x) =

`(hi([p, z])) + `(h([z, x])). �

Proof of Lemma 4.14. Suppose C and C′ lie in the same component Ck of X1/k for all k ∈ N.

The space of subcontinua (non-empty, compact, connected subsets) of a compact planar set

equipped with the Hausdorff metric is a compact complete metric space. By passing to a

subsequence which we also call Ck, we have Ck → C0 as k → ∞, where C0 is itself non-

empty, compact and connected. Convergence in the Hausdorff metric implies that C ∪C′ ⊆

C0 ⊆ X, contradicting that C and C′ are distinct connected components of X. �
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(a) (b)

Figure 4.5: (a) Jordan domain satisfying Bonino’s [18] condition.
(b) Horseshoe map with neighbourhood of a period-two point removed from its domain:
The map has period-three points of non-trivial braid type, but no period-two points, showing
that a simple generalisation of period-forcing results to non-self maps of planar domains
does not work.

4.5 Discussion of assumptions and possible extensions

Easy examples show that in our main results we cannot omit the hypothesis of a periodic

orbit being completely contained in a given connected component of X∩ f (X): take X to be

a closed ε-neighbourhood of the straight line segment S = [−1, 1] × {0} and let f : X → Y

be a homeomorphism which maps S to the semicircle {(x, y) : x2 + y2 = 1, y ≥ 0} with

f (−1, 0) = (1, 0) and f (1, 0) = (−1, 0). For ε > 0 small, f has a period-two orbit (spread

over two different connected components of X ∩ f (X)) but no fixed point.

Furthermore, obvious counterexamples show that our main result, Corollary 4.3,

fails when the domain X ⊂ R2 of the homeomorphism f is not compact. Also, we are not

aware of generalisations to higher dimensions; in fact, simple counterexamples to Theo-

rem 4.2 in its current form can be constructed, when X ⊂ Rn is an n-dimensional ball with

n ≥ 3.

Bonino [18] showed that if an orientation-preserving homeomorphism f : R2 → R2

possesses non-escaping points in a topological disk D bounded by a simple closed curve

C, and C can be split into two arcs α = [a, b]C , β = [b, a]C such that D ∩ f −1(β) = ∅ and

f −1(D) ∩ α = ∅ (see Figure 4.5(a)), then f has a fixed point in D. Bonino’s theorem is

similarly topological, but does not imply (and is not implied by) our results.

Another result related to Theorem 4.2 is due to Brown [24, Theorem 5]. Brown

assumed that for the n-periodic point x ∈ X there is a connected neighbourhood W of

{x} ∪ { f (x)} with f i(W) ⊂ X for i = 1, . . . , n, and showed that f then has a fixed point in X.

A somewhat different class of results relates to the question of period forcing. Gam-
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baudo et al. [35] showed that a C1 orientation-preserving embedding of the disk into itself

has periodic orbits of all periods, if it has a period-three orbit of braid type different than

the rotation by angle 2π/3 (see also Kolev [56] for a topological version of this result). For

f (X) 1 X, this statement is false: a counterexample is a version of the Smale horseshoe

map, where a period-two point is removed from the disk together with a narrow strip such

that the remaining domain X is still simply connected (see Figure 4.5(b)). Then f , the

restriction of the horseshoe map to X, is an orientation-preserving homeomorphism with

X ∩ f (X) connected, and one can choose the removed strip narrow enough such that f

still has period-three orbits but no period-two orbit in X. We conclude with the following

question:

Question 4.15. Can one find conditions on X and f (X), under which every extension of f

to a homeomorphism of R2 has periodic orbits of every period passing through X, whenever

f has a period-three point (of non-trivial braid type) in X?

The method of extending a non-self map of X ⊂ R2 to a self-map of R2 (or D)

without adding fixed (or periodic) points could possibly also be applied to this problem.
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Chapter 5

Piecewise affine model maps

Piecewise affine maps and piecewise isometries have received a lot of attention, either as

simple, computationally accessible models for complicated dynamical behaviour, or as a

class of systems with their own unique range of dynamical phenomena. For a list of exam-

ples, see [1–3, 8, 25, 26, 39, 40, 58, 76, 79, 81, 96–98] and references therein.

As we have seen in Section 1.2.6, fictitious play dynamics of 3× 3 zero-sum games

with unique, completely mixed Nash equilibrium can be represented by a Hamiltonian flow

on S 3. In certain cases (for instance, the game (1.7) with β = σ; see the end of Section 1.3)

this induced flow has a global first return section, which is a topological disk D and whose

first return map R is continuous, piecewise affine, area-preserving and extends continuously

to the boundary of the disk by R|∂D = id.

In Chapter 2, we investigated the itinerary structure of fictitious play and the in-

duced flow, and undertook numerical simulations of the qualitative behaviour of its first

return maps. Then in Chapter 4, we looked at more general planar homeomorphisms, in

particular non-self maps of compact planar regions, which is a frequently occurring setting

when studying the behaviour of such first return maps restricted to certain subsets of their

domains.

In this chapter, we take a somewhat different approach and study the phenomenol-

ogy of such maps by considering instead a formally similar family of planar piecewise

affine maps. These serve as models for the first return maps of the induced fictitious play

flow by sharing their formal properties, while at the same time being simple enough to al-

low for explicit calculations. More precisely, each map in this one-parameter family is a

homeomorphism of the standard unit square to itself, which is

• piecewise affine,

• (everywhere) continuous,
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• area-preserving, and

• fixes the boundary of the square pointwise.

The nine-piece construction considered here seems to be the simplest possible (non-

trivial) example satisfying all of these formal properties. The qualitative behaviour of these

maps resembles that seen in Section 2.2 for the first return maps of fictitious play. In

particular, the ways in which stochastic and (quasi-)periodic behaviour coexist seem to

be of similar type, giving rise to similar phenomena.

Apart from these connections with fictitious play, the family of maps studied in this

chapter is of independent mathematical interest, as it raises a number of questions related

to classical problems (such as, for example, the ergodic hypothesis). These are often very

hard to answer generally, but might be accessible for simple models such as this one, where

explicit calculations and numerical simulations are significantly easier.

The chapter is organised as follows. In Sections 5.1 and 5.2 we present a geometric

construction of our family of maps and describe its basic formal properties. Then, interested

in the long-term behaviour of iterates of the maps, our next goal is to establish the existence

of certain invariant regions. For that, in Section 5.3 we develop some technical results about

periodic orbits and invariant curves, and in Section 5.4 prove their existence for certain pa-

rameter values. Finally, in Section 5.5 we discuss the dynamics for more general parameter

values, present numerical observations and discuss open questions.

The contents of this chapter are contained in the preprint [73], which at the time of

submission of this thesis is submitted for publication.

5.1 Construction of the family of maps

Let us denote the unit square by S = [0, 1]× [0, 1]. We construct a one-parameter family of

continuous, piecewise affine maps Fθ : S → S, θ ∈ (0, π4 ), as follows (see Figure 5.1 for an

illustration).

Denote the four vertices ofS by E1 = (0, 0), E2 = (1, 0), E3 = (1, 1) and E4 = (0, 1).

In the following we will use indices i ∈ I = {1, 2, 3, 4} with cyclic order, that is, with the

understanding that index i + 1 is 1 for i = 4 and index i − 1 is 4 for i = 1.

Let θ ∈ (0, π4 ), and for i ∈ I let Li be the ray through Ei, such that the angle between

the segment EiEi+1 and Li is θ. Let Pi ∈ int(S) be the point Li−1 ∩ Li, then the Pi, i ∈ I,

form a smaller square inside S. Now we divide S into the following nine regions (see

Figure 5.1(left)):

• four trianglesAi = ∆(Ei, Ei+1, Pi), i ∈ I, each adjacent to one of the sides of S;
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Figure 5.1: (Construction of the map F = Fθ) F(Ei) = Ei, F(Pi) = P′i ; F is affine on each
ofAi, Bi and C, such that F(Ai) = A′i , F(Bi) = B′i and F(C) = C′.

• four triangles Bi = ∆(Ei, Pi, Pi−1), i ∈ I, each sharing one side withAi−1 andAi;

• a square C = �(P1, P2, P3, P4), each side of which is adjacent to one of the Bi.

Now we repeat the same construction ’in reverse orientation’, to obtain a second,

very similar partition of S, as shown in Figure 5.1(right). Here we denote the vertex of the

inner square which has the same y-coordinate as P1 by P′1, and the other vertices of the

inner square by P′2, P′3, P′4, in counter-clockwise order. For i ∈ I we denote the triangles

A′i = ∆(Ei, Ei+1, P′i), B
′
i = ∆(Ei, P′i , P

′
i−1) and the square C′ = �(P′1, P

′
2, P

′
3, P

′
4).

Finally, the map F = Fθ : S → S is uniquely defined by the data

• F(Ei) = Ei, i ∈ I;

• F(Pi) = P′i , i ∈ I;

• F affine on each of the piecesAi, Bi, and C.

5.2 Properties of the maps

It is easy to see that F is a piecewise affine homeomorphism of S, with F(Ai) = A′i and

F(Bi) = B′i for each i ∈ I, and F(C) = C′. Moreover, F is area- and orientation-preserving,

since dF is constant on each of the pieces, with det dF = 1 everywhere. Note that while F

is continuous, its derivative dF has discontinuity lines along the boundaries of the pieces;

we call these the break lines. Note also that F|∂S = id.
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We denote P1 = (s, t), where t ∈ (0, 1
2 ) and s ∈ (0, 1

2 ). The coordinates of the other

points Pi and P′i are then given by symmetry. Simple geometry gives that s, t and θ satisfy

t − t2 = s2, t = sin2 θ, s = sin θ cos θ. (5.1)

The map F is given by three types of affine maps A, B and C:

• A : A1 → A
′
1 is a shear fixing E1E2 = [0, 1] × {0} and mapping P1 to P′1:

A(x, y) =

1 1−2s
t

0 1

 x

y

 .
It leaves invariant horizontal lines and moves points in int(A1) to the right (since

(1 − 2s)/t > 0).

• B : B1 → B
′
1 is a linear scaling map with a contracting and an expanding direction,

defined by B(E1) = E1, B(P1) = P′1 and B(P4) = P′4:

B(x, y) =
1

t − s

t2 − (1 − s)2 (1 − 2s)t

(2s − 1)t (2t − 1)t

 x

y

 .
It can be checked that the contracting direction of B lies in the sector between E1P4

and E1E4, and the expanding direction in the sector betwen E1E2 and E1P1. From

general theory we also have that B preserves the quadratic form given by

QB(x, y) = t(x2 + y2) − xy. (5.2)

• C : C → C′ is the rotation about Z = ( 1
2 ,

1
2 ), mapping Pi to P′i , i ∈ I:

C(x, y) =

 2s 2t − 1

1 − 2t 2s

 x

y

 +

1 − t − s

t − s

 .
The rotation angle is α = π

2 − 2θ, where θ is the parameter angle in the construction

of the map F.

All other pieces of F are analogous, by symmetry of the construction. To capture this high

degree of symmetry, we make the following observations which follow straight from the

definition of F.

Lemma 5.1. Let R denote the rotation about Z by the angle π
2 . Then F and R commute:

F ◦ R = R ◦ F.
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Lemma 5.2. Let S (x, y) = (y, x). Then F is S -reversible, that is, S conjugates F and F−1:

S ◦ F ◦ S = F−1.

Further, F is T1- and T2-reversible for the reflections T1(x, y) = (1 − x, y) and T2(x, y) =

(x, 1 − y).

Heuristically, F acts similarly to a twist map: The iterates Fn(X) of any point X ∈

int(S) rotate counterclockwise about Z as n → ∞. The ’rotation angle’ (the angle between

ZX and ZF(X)) is not constant, but it is bounded away from zero as long as X is bounded

away from ∂S; in particular, every point whose orbit stays bounded away from the boundary

runs infinitely many times around the centre.

Note also that the rotation angle is monotonically decreasing along any ray ema-

nating from the centre Z. However, it is not strictly decreasing, as all points in C rotate

by the same angle; this sets the map F apart from a classical twist map, for which strict

monotonicity (the ‘twist condition’) is usually required.

5.3 Invariant circles

Clearly, the circle inscribed to the inner square C and all concentric circles in it centred at Z

are invariant under F, which acts as a rotation on these circles. When θ is a rational multiple

of π, the rotation C is a rational (periodic) rotation, and a whole regular n-gon inscribed to

C is F-invariant, see Figure 5.4.

We are interested in other invariant circles encircling Z, as these form barriers to the

motion of points under F and provide a partitioning of S into F-invariant annuli. Numerical

simulations indicate that such curves exist for many parameter values θ and create invariant

annuli, on which the motion is predominantly stochastic.

This section follows closely the arguments of Bullett [25], where in a similar way,

invariant circles are studied for a piecewise linear version of the standard map. The idea is

to study the orbits of the points where the invariant circles intersect break lines and to prove

that these follow a strict symmetry pattern, forming so-called cancellation orbits.

We consider invariant circles Γ on which F preserves the S 1-order of points. This,

for example, is the case if all rays from Z intersect the circle Γ in precisely one point. For

an invariant circle Γ, we denote the rotation number of F|Γ : Γ → Γ by ρΓ = ρ(F|Γ). By

simple geometric considerations, we get the following lemma.

Lemma 5.3. Let Γ1,Γ2 be two invariant circles for F encircling Z. If Γ1 is contained in the

component of S \ Γ2 containing Z, then ρΓ1 ≥ ρΓ2 .
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In other words, if there is a family of such nested invariant circles, their rotation

number is monotonically decreasing as the circles approach ∂S. It also follows that the

rotation number ρ of any orbit is bounded above by the rotation number on the centre piece

C, that is,

0 ≤ ρ ≤
α

2π
=

1
4
−
θ

π
.

We now consider F-invariant circles near the boundary ∂S, which do not intersect

the centre piece C. Any such curve Γ intersects exactly two types of break line segments:

the segments Bi ∩Ai = EiPi andAi ∩Bi+1 = Ei+1Pi+1, i ∈ I. Let us call these intersection

points Ui = Γ ∩ (Bi ∩Ai) and Vi = Γ ∩ (Ai ∩ Bi+1).

We say that an invariant curve which encircles Z and on which F preserves the

S 1-order is rotationally symmetric, if it is invariant under the rotation R (cf. Lemma 5.1):

R(Γ) = Γ.

In the remainder of this section we will use the fact that any invariant circle Γ with

rational rotation number is of one of the following two types [54]:

• pointwise periodic, that is, F|Γ is conjugate to a rotation of the circle;

• non-periodic, that is, F|Γ is not conjugate to a rotation; however, in this case, F|Γ still

has at least one periodic orbit.

Following the ideas in [25], we now prove a number of results illustrating the im-

portance of the orbits of Ui and Vi for the invariant circle containing them.

Lemma 5.4. Let Γ be a rotationally symmetric invariant circle disjoint from C. Assume

that F|Γ has rational rotation number ρΓ =
p
q ∈ Q, and that F|Γ is periodic. Then for i ∈ I

the orbit orb(Ui) = {Fn(Ui) : n ∈ Z} contains some V j , j ∈ I, and vice versa.

Proof. By symmetry it is sufficient to show the result for U1. Suppose for a contradiction

that V j < orb(U1) for all j ∈ I. Let O = (
⋃

i orb(Ui)) ∪ (
⋃

j orb(V j)), which by periodicity

of F|Γ is finite. Let X,Y ∈ O be the two points closest to U1 on either side along Γ. Consider

the line segment XY which crosses the break line going through U1. Then F(XY) is a ‘bent’

line, consisting of two straight line segments, so that F maps the triangle ∆(X,U1,Y) to a

quadrangle.

Now, by assumption and periodicity of F|Γ, there exists k > 1 such that Fk(U1) = U j

for some j ∈ I and Fl(U1) < {Ui : i ∈ I} ∪ {V j : j ∈ I} for 1 ≤ l < k. This implies that the

triangle ∆(F(X), F(U1), F(Y)) is mapped by Fk−1 to the triangle ∆(Fk(X), Fk(U1), Fk(Y))

without bending any of its sides (since X and Y are the points in O closest to U1).

By symmetry we have that ∆(Fk(X), Fk(U1), Fk(Y)) = R̃(∆(X,U1,Y)), where R̃ is
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the rotation about Z by one of the angles 0, π2 , π,
3π
2 , and hence

area(∆(Fk(X), Fk(U1), Fk(Y))) = area(∆(X,U1,Y)).

But F is area-preserving, so

area(∆(Fk(X), Fk(U1), Fk(Y))) = area(∆(F(X), F(U1), F(Y))),

which is a contradiction because F maps ∆(X,U1,Y) to a quadrangle which either properly

contains or is properly contained in ∆(F(X), F(U1), F(Y)). �

With slightly bigger effort, we can extend the result to the case of non-periodic F|Γ.

Lemma 5.5. Let Γ be a rotationally symmetric invariant circle disjoint from C. Assume

that F|Γ has rational rotation number ρΓ =
p
q ∈ Q, and that F|Γ is not periodic. Then for

i ∈ I, the orbit of Ui contains some V j , j ∈ I, and vice versa.

Proof. As in the previous lemma, we give a proof for U1, the other cases following by

symmetry. We distinguish two cases.

Case 1: U1 non-periodic for F. Let us write zk = Fk(U1) for k ∈ Z. Since ρΓ =
p
q ∈ Q, there exist points Q and Q′ in Γ, each periodic of period q, such that znq → Q

and z−nq → Q′ as n → ∞. Note that Fq is affine in a sufficiently small neighbourhood on

either side of Q. Then for sufficiently large N, the points znq, n > N, lie on the straight line

segment zNqQ (the contracting direction at Q). Hence for large n, Γ contains the straight

line segment znqQ. Analogously, for large n, the straight line segment Q′z−nq is contained

in Γ. In particular, ` = z−(m+2)qz−mq is contained in Γ for large m. But U1 ∈ F(m+1)q(`),

so Fnq(`) has a kink for large n unless zNq = V j for some N and j (note that since U1 is

non-periodic, Ui < orb(U1), i ∈ I). Since Fnq(`) is near Q for large n, it has to be straight,

and it follows that V j ∈ orb(U1) for some j.

Case 2: U1 periodic for F. In this case Fq(U1) = U1 and the argument is similar

to the proof of Lemma 5.4. Assume for a contradiction that V j < orb(U1) for all j. By

symmetry, this implies V j <
⋃

i orb(Ui). Pick X,Y ∈
⋃

i orb(Ui) nearest to V1 from each

side and denote by S the segment of Γ between X and Y . Since the straight line segment XY

crosses the break line which contains V j, its image F(XY) has a kink. Therefore, since F is

area-preserving, the area between F(S ) and F(X)F(Y) is either greater or less than the area

between S and XY . For 0 ≤ k < q, the area between Fk(S ) and Fk(X)Fk(Y) is equal to the

area between Fk+1(S ) and Fk+1(X)Fk+1(Y), unless Fk(S ) contains one of the V j. Whenever

V j ∈ Fk(S ) for some j and k (which can happen at most four times for 0 ≤ k < q), this area

decreases or increases. By symmetry, these up to four changes have the same form, so the

106



area either always decreases or always increases. Note on the other hand that Fq(S ) = S ,

Fq(X) = X and Fq(Y) = Y (since X and Y are in the q-periodic orbit of U1). So if we denote

the region between S and XY by Ω, area(Fq(Ω)) , area(Ω), which contradicts the fact that

F is area-preserving. This finishes the proof. �

Combinining the above lemmas, we get the following result.

Proposition 5.6. Let Γ be a rotationally symmetric invariant circle disjoint from C with

rotation number ρΓ =
p
q ∈ Q. Then for every i ∈ I, the F-orbit of Ui contains some V j,

j ∈ I, and vice versa. Moreover, every such orbit contains an equal number n of the Ui and

V j, which are traversed in alternating order. If n ≥ 2, then any such orbit is periodic.

Remark 5.7. In [25], Bullett coined the term ‘cancellation orbits’ for these orbits of break

points on an invariant circle, reflecting the insight that each ‘kink’ introduced by the discon-

tinuity of dF at one such point needs to be ‘cancelled out’ by an appropriate ‘reverse kink’

at another discontinuity point of dF, if the invariant circle has rational rotation number.

However, cancellation orbits can also occur on invariant circles with ρ < Q. In that

case these orbits are not periodic, and each cancellation orbit would only contain one of the

Ui and one of the V j. We will see examples for this in Section 5.4.

The next result shows that cancellation orbits in fact determine the behaviour of the

whole map F|Γ.

Proposition 5.8. Let Γ be a rotationally symmetric invariant circle disjoint from C. Then

F|Γ is periodic if and only if the Ui- and Vi-orbits are periodic.

Proof. Of course, if the rotation number ρΓ is irrational, neither F|Γ nor the break point

orbits can be periodic, so we only need to consider rational rotation number.

Further, if F|Γ is periodic, so are all cancellation orbits. For the converse, suppose

for a contradiction that Ui and Vi, i ∈ I, are periodic, but F|Γ is not. We repeat an argument

already familiar from the proof of Lemma 5.5.

Pick any non-periodic point P ∈ Γ, then there exists Q ∈ Γ, such that Fnq(P) → Q

as n → ∞. Note that Fq is affine in a sufficiently small neighbourhood on either side of

Q. Then for n > N sufficiently large, the points Fnq(P) lie on a straight line segment from

FNq(P) to Q (the contracting direction at Q). So Γ contains a straight line segment S which

expands under F−q. This expansion cannot continue indefinitely, so F−mq(I) must meet

some Ui (or Vi) for some m. But then this Ui (or Vi) cannot be periodic, which contradicts

the assumption. �
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Figure 5.2: (Proof of Theorem 5.9) Construction of a periodic cancellation orbit for K = 3,
N = 2. The points XN ∈ E1P4 and YN ∈ E1P1 are chosen such that FK(XN) = YN

(Lemma 5.10) and FN(YN) = R(XN) ∈ E2P1 (Lemma 5.11). The dots are the F-iterates of
XN , the dashed lines indicate the line segments making up (part of) the invariant circle ΓN

K .

5.4 Special parameter values

In this section, we will show that for a certain countable subset of parameter values θ ∈

(0, π4 ), the map F = Fθ has invariant circles of the form described in the previous section.

Theorem 5.9. There exists a sequence of parameter angles θ3, θ4, . . . ∈ (0, π4 ), θK →
π
4 as

K → ∞, such that for each K, FθK has a countable collection of invariant circles {ΓN
K :

N ≥ 0}, each of rational rotation number ρ(ΓN
K) = 1/(4(K + N)). The curves ΓN

K consist

of straight line segments, are rotationally symmetric and converge to the boundary ∂S as

N → ∞.

Proof. We will prove the result by explicitly finding periodic orbits in
⋃

i(Ai ∪ Bi), which

hit the break lines whenever passing from one of the pieces to another. More precisely,

we will show that for K ≥ 3 and N ≥ 0, there is a parameter value θ = θK and a point

XN ∈ E1P4, such that Fn(XN) ∈ B1 for 0 ≤ n < K, FK(XN) ∈ E1P1, Fn(XN) ∈ A1 for

K ≤ n < K + N, and FN+K(XN) = R(XN) ∈ E2P1, where R is the counter-clockwise rotation

by π
2 about the centre of the square (see Figure 5.2). By symmetry this clearly gives a

periodic cancellation orbit, and an invariant circle is then given by

ΓN
K =

4(K+N)⋃
i=0

Fi(XN)Fi+1(XN).

We use the following two lemmas, whose proofs are delayed until after the proof of

the theorem.
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Lemma 5.10. For every K ∈ N, K ≥ 3, there exists a parameter θK ∈ (0, π4 ), such that for

F = FθK , Fk(E1P4) ⊂ B1 for 0 ≤ k < K, and FK(E1P4) = E1P1 = B1 ∩ A1. For K → ∞,

the angle θK tends to π
4 .

Lemma 5.11. For every θ ∈ (0, π4 ) and N ≥ 0 there exists a point YN ∈ E1P1 = B1 ∩ A1

such that Fn(YN) ∈ A1 for 0 ≤ n < N and FN(YN) ∈ E2P1 = A1 ∩ B2. For N → ∞, the

points YN converge to E1.

By Lemma 5.10, for every K ≥ 3 we can find θK such that FK maps E1P4 to

E1P1 (in B1). Then by Lemma 5.11, for any N ≥ 0 there exists XN ∈ E1P4 such that

FK(XN) = YN ∈ E1P1 and FK+N(XN) ∈ E2P1, and it can be seen that each open line

segment (Fk(XN), Fk+1(XN)), k = 0, . . . ,K + N − 1, lies in the interior of either B1 (0 ≤ k <

K) orA1 (K ≤ k < K + N), see Figure 5.2.

Further, B preserves the quadratic form QB(x, y) = t(x2 + y2) − xy. With XN =

(x1, y1) ∈ E1P4 and FK(XN) = (x2, y2) ∈ E1P1 as above, a simple calculation shows that

QB(XN) = QB(FK(XN)) implies that x1 = y2. Then with FK+N(XN) = (x3, y3) ∈ E2P1,

one has y3 = y2, as A preserves the y-coordinate. We have that R(E1P4) = E2P1, and since

x1 = y3, it follows that FK+N(XN) = R(XN). Rotational symmetry (Lemma 5.1) then implies

that XN is a periodic point of period 4(K + N) for F, and the line segments connecting the

successive F-iterates of XN form a rotationally symmetric invariant circle for F.

Hence we obtain, for each K ≥ 3, a parameter θK such that FθK has a sequence of ro-

tationally invariant circles ΓN
K , N ≥ 0, each consisting of straight line segments. Moreover,

Lemma 5.11 implies that ΓN
K → ∂S (in the Hausdorff metric) and ρΓN

K
= 1/(4(K + N))→ 0

as N → ∞. �

Proof of Lemma 5.10. First, recall that the map B : B1 → B1 ∪A1 ∪ C leaves invariant the

quadratic form (5.2). Then, using P4 = (1 − s, t) and P1 = (s, t), we calculate

QB(P4) − QB(P1) =

(
(1 − s)2 + t2 −

(1 − s)t
t

)
−

(
s2 + t2 −

st
t

)
= 0,

and hence QB(P4) = QB(P1) C c. So the line {x ∈ B1 : QB(x) = c} is a segment of

a hyperbola connecting P4 and P1. Therefore, with V = {x ∈ B1 : QB(x) ≤ c}, we get

F(V) = B(V) ⊂ (V ∪A1).

Further, note that B maps rays through E1 to other rays through E1. This implies

that all points on the straight line segment E1P4 = A4 ∩ B1 remain in the piece B1 for

equally many iterations of the map F, before being mapped into A1. In particular, if for

X ∈ E1P4 we have that

Fk(X) ∈

B1 if 0 ≤ k < K,

E1P1 if k = K,
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then the same holds for every other point X′ ∈ E1P4, and FK(E1P4) = E1P1.

We will now show that there exists a sequence of parameter values θK , K ≥ 3, such

that for F = FθK , Fk(P4) = Bk(P4) ∈ B1 for 0 ≤ k ≤ K and FK(P4) = P1. For this, we

need a few elementary facts about the map B, which follow from straightforward (but rather

tedious) calculations:

• Let f (t) =
√

1 − 4t2. Then the hyperbolic map B has two eigendirections

v1 =

1 + f (t)

2t

 , v2 =

 2t

1 + f (t)


with corresponding eigenvalues

λ1 = λ =
4t2 − 2t + (2s − 1)(1 + f (t))

2(t − s)
> 1, λ2 = λ−1 < 1. (5.3)

• By a linear change of coordinates Φ : R2 → R2 mapping v1 and v2 to (1, 0) and (0, 1),

respectively, one gets a conjugate linear map

B̃ = Φ ◦ B ◦ Φ−1 =

λ 0

0 λ−1

 .
Setting Φ(P4) = Φ(t, 1 − s) =: (x1, y1) and Φ(P1) = Φ(s, t) =: (x2, y2), a somewhat

tedious calculation gives

x2

x1
=

2ts + t( f (t) − 1)
2t2 + (1 − s)( f (t) − 1)

. (5.4)

Now, since B̃K = Φ ◦ BK ◦ Φ−1, it follows that BK(P4) = P1 is equivalent to

B̃KΦ(P4) = Φ(P1). By the simple form of B̃K , this is equivalent to x2 = λK x1, that is,

K =
log(x2/x1)

log(λ)
. (5.5)

Substituting (5.3) and (5.4) into (5.5), and using s =
√

t − t2 from (5.1), we get an

expression K = K(t) for 0 < t < 1
2 . Then K is differentiable and strictly monotonically

decreasing as a function of t, and (by application of L’Hôpital’s rule)

K →

2 as t → 0,

∞ as t → 1
2 .

Since sin2 θ = t with t ∈ (0, 1
2 ), θ ∈ (0, π4 ), we get that for each K ≥ 3 there exists θK ∈ (0, π4 )
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Figure 5.3: The form of the map Φ : R → R(R), where R is the quadrangle formed by two
consecutive cancellation orbit points on each of two adjacent invariant circles ΓN

K , ΓN+1
K .

The first return map of F to R is (by symmetry) the fourth iterate of Φ.

such that BK(P4) = P1, hence BK(E1P4) = E1P1, as claimed. �

Proof of Lemma 5.11. First, the shear map A : A1 → A1∪B2 is such that any point (x, y) ∈

A1 is mapped to F(x, y) = A(x, y) = (x + c̃y, y), c̃ > 0. By continuity, it follows that for any

N ≥ 0 there exists a point YN ∈ E1P1 = B1 ∩A1 such that Fn(YN) ∈ A1 for 0 ≤ n < N and

FN(YN) ∈ E2P1 = A1 ∩ B2. Clearly, Y0 = P1 = (s, t), and one can calculate that

YN =
1

1 + N(1 − 2s)
(s, t), N ≥ 0,

and YN → (0, 0) = E1 as N → ∞. �

In the proof of the theorem, for a sequence of special parameter values θK we con-

structed periodic orbits hitting the break lines and invariant circles made up of line segments

connecting the points of the periodic orbits. A closer look at the behaviour of F between

any two consecutive invariant circles in this construction reveals that in fact the dynamics

of F in these regions is very simple for these parameter values.

To see this, let θ = θK , K ≥ 3, N ≥ 0, and take X ∈ ΓN
K ∩ E1P1, Y ∈ ΓN+1

K ∩ E1P1.

Then X and Y give rise to periodic cancellation orbits of periods 4(K + N) and 4(K + N + 1)

on the respective invariant circles. Let R be the quadrangle with vertices X,Y, F(Y), F(X).

Then FK+N(X) = R(X) and FK+N+1(Y) = R(Y) lie in E2P2 = R(E2P2), and FK+N maps

the triangle D1 = ∆(X, F(Y), F(X)) affinely to the triangle R(∆(X,Y, F(X))) and FK+N+1

maps D2 = ∆(X,Y, F(Y)) affinely to R(∆(Y, F(Y), F(X))). This gives a piecewise affine map

Φ : D1 ∪ D2 = R → R(R) of the simple form shown in Figure 5.3. By symmetry, the first

return map of F to the quadrangle R is then the fourth iterate of such map, and is easily

seen to preserve the y-coordinate.

It follows immediately that in fact all points in the annulus between ΓN
K and ΓN+1

K

lie on invariant circles. These invariant circles are of the same form as the ΓN
K , that is, they

consist of line segments parallel to those explicitly constructed in the proof of Theorem 5.9.

The rotation number of the invariant circle through the point W ∈ E1P1 changes continu-
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ously (more precisely, linearly) from 1/(4(K + N)) to 1/(4(K + N + 1)), as W goes from X

to Y .

These invariant circles take on both rational and irrational rotation numbers, and

their intersections with the break lines are not necessarily periodic as those of the ΓN
K , but

their orbits still form cancellation orbits, since FK(E1P4) = E1P1 (see Remark 5.7). We get

the following corollary.

Corollary 5.12. For θ = θK , K ≥ 3, as in Theorem 5.9, the annulus between ∂S and Γ0
K (the

invariant circle containing Pi and P′i , i ∈ I) is completely foliated by rotationally symmetric

invariant circles with rotation numbers continuously and monotonically varying from 0 on

∂S to 1/(4K) on Γ0
K .

Remark 5.13. One can check that K = 3 in the proof of Theorem 5.9 is obtained by setting

θ = π
8 , corresponding to t = (2 −

√
2)/4 and s =

√
2/4. In this case C is the rotation by π

4

on C. For K ≥ 4, exact values for θ are less easy to determine explicitly.

In the special case θ = π
8 , the map F turns out to be of a very simple form, allowing

a complete description of the dynamics on all of S. By a similar argument applied to the

region inside Γ0
3 (containing the rotational part C), the statement of Corollary 5.12 can then

be strengthened, stating that in this case the whole space S is foliated by invariant circles,

with rotation numbers varying continuously and monotonically from 0 on ∂S to 1
8 on the

invariant octagon O inscribed in C. The invariant circles between Γ0
3 and O each consist of

twelve straight line segments, parallel to the twelve segments of Γ0
3, see Figure 5.4.

5.5 General parameter values and discussion

For other parameter values than the ones considered in the previous section, we generally

cannot prove the existence of any invariant circles. Let us briefly mention more general

‘higher order’ cancellation orbits and invariant circles.

Recall that in Theorem 5.9, we constructed a family of invariant circles consisting

of line segments connecting successive orbit points of periodic cancellation orbits. The

chosen cancellation orbits were of the simplest possible kind, where a point on any break

line is mapped by a certain number of iterations to the next possible break line.

It is possible to construct invariant circles from one or several more complicated

periodic cancellation orbits1 (for other values of θ than the ones in Theorem 5.9). On such

periodic cancellation orbit, the iterates of a point on a break line would cross several break
1Due to the rotational symmetry of the system, a periodic cancellation orbit could contain one, two or four

pairs of break points. In the first two cases, the union of all rotated copies of the cancellation orbit would need
to be considered, to form an invariant circle by adding straight line segments between successive points in this
union.
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Figure 5.4: (The case θ = θ3 = π
8 from Remark 5.13) The solid piecewise straight line

circles are the invariant octagon O inscribed in C, as well as the invariant circles Γ0
3, Γ1

3 and
Γ10

3 . In the annulus between O and Γ0
3, the first 100 iterates of an orbit are depicted, all lying

on an invariant circle which consists of twelve straight line segments.

lines before hitting one. The resulting invariant circle would still consist of straight line

segments, but in such a way that a given segment and its image under F are not adjacent on

the circle.

Doing this ‘higher order’ construction is conceptually not much more difficult, but

certainly more tedious than the ‘first order’ construction of Theorem 5.9. The effort to

construct even just a single higher order periodic cancellation orbit seems futile, unless a

more general scheme to construct all or many of them at once can be found.

It is unclear whether invariant circles of this type exist for all θ, and whether for

typical θ there exist piecewise line segment invariant circles (of rational or irrational rotation

number) containing non-periodic cancellation orbits, as the ones seen in Corollary 5.12.

Question 5.14. For which parameter values θ ∈ (0, π4 ) does Fθ have invariant circles with

periodic cancellation orbits (and therefore rational rotation number)? For which θ are

there piecewise line segment invariant circles with non-periodic cancellation orbits?

Moreover, we can at this point not rule out the existence of invariant circles (outside

of C) of an entirely different kind, not consisting of straight line segments. Indeed, some

numerical experiments seem to indicate the occurrence of invariant regions with smooth

boundaries, but it is unclear whether this is due to the limited resolution (see, for example,

left pictures in Figures 5.5 and 5.6).

By Proposition 5.6, the intersections of any invariant circle of rational rotation num-
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Figure 5.5: The first 5·105 iterates of three initial points for θ = π
11 . Each of the orbits seems

to be confined to an invariant annulus and fill this annulus densely, except for a number of
elliptic islands. The left picture seems to show an invariant region bounded by a smooth
invariant circle. However, this might be an actual piecewise line segment curve, seemingly
smooth because of the limited resolution and orbit length.

Figure 5.6: Zoom-in of the first two orbits from Figure 5.5, showing that the invariant annuli
contain large numbers of smaller and smaller elliptic island chains. Further zoom-in (and
longer orbits) reveal increasingly intricate patterns of such quasi-periodic elliptic regions.
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ber with the break lines form cancellation orbits. For irrational rotation number, this need

not be the case. Note however, that under irrational rotation, the ‘kink’ introduced to an

invariant circle at its intersection with a break line propagates densely to the entire circle,

unless it is cancelled by eventually being mapped to another break line intersection. Hence,

an invariant circle of irrational rotation number would either contain a cancellation orbit for

each pair of break lines, or otherwise would be geometrically complicated, namely nowhere

differentiable.

Question 5.15. Are there invariant circles for F (outside of C) which are not comprised of

a finite number of straight line segments? Are there invariant circles whose intersections

with the break lines do not form cancellation orbits?

As for the dynamics of F between invariant circles, we can only point to numerical

evidence that annuli between consecutive invariant circles form ergodic components inter-

spersed with ‘elliptic islands’. An elliptic island consists of a periodic point of, say, period

p, surrounded by a family of ellipses which are invariant under F p, such that F p acts as an

irrational rotation on each of these ellipses; this is referred to as ‘quasi-periodic’ behaviour.

In the case when F p is a rational rotation, these quasi-periodic invariant circles would take

on the shape of polygons, consisting entirely of p-periodic points. The rest of the annuli

seems to be filled with what is often referred to as ‘stochastic sea’, that is, the dynamics

seems to be ergodic and typical orbits seem to fill these regions densely.

As in many similar systems (for instance, perturbations of the standard map), nu-

merical observations seem to indicate that these ‘ergodic regions’ have positive Lebesgue

measure (see Figures 5.5-5.9). This is related to questions surrounding the famous ‘quasi-

ergodic hypothesis’, going back to Ehrenfest [27] and Birkhoff [16], conjecturing that

typical Hamiltonian dynamical systems have dense orbits on typical energy surfaces (see

also [47]).

For a piecewise linear version of the standard map, Bullett [25] established a number

of results on cancellation orbits and invariant circles of both rational and irrational rotation

numbers. Wojtkowski [97, 98] showed that the map is almost hyperbolic and deduced that

it has ergodic components of positive Lebesgue measure. Almost hyperbolicity here means

the almost everywhere existence of invariant foliations of the space (or an invariant subset)

by transversal local contracting and expanding fibres. Equivalently, this can be expressed

through the existence of invariant contracting and expanding cone fields. By classical theory

(see, for example, [89]) almost hyperbolicity implies certain mixing properties of the map,

and in particular, the existence of an at most countable collection of ergodic components of

positive Lebesgue measure.

A similar kind of cone construction as in [97, 98] seems to be more difficult for

the map studied here. One important difference is that the piecewise linear standard map
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Figure 5.7: The first 105 iterates of four initial points for θ = π
20 . Each seems to be a dense

orbit in an invariant annulus. The four annuli (without a number of elliptic islands and the
invariant periodic regular 20-gon inscribed in C) seem to be the ergodic components of F.

116



Figure 5.8: The first 105 iterates of two initial points for θ = π
5 . Each of the orbits seems

to densely fill a thin invariant annulus. The rectangle seems to be partitioned into finitely
many such invariant annuli (which get thinner and more numerous as θ → 0).

Figure 5.9: Zoom-in of the orbits from Figure 5.8. The thin invariant annuli contain periodic
island chains, which under even stronger magnification could be seen to be surrounded by
further, finer, islands of quasi-periodic motion.

117



in these papers is a twist map, which is not strictly the case for the map F studied here

(see [59] and references therein for an overview over the numerous classical results for

twist maps, mostly based on Birkhoff and Aubry-Mather theory). The additional property

that F equals the identity on the boundary of the square also sets it apart. In particular,

the motion of points under F close to the boundary can be arbitrarily slow, that is, take

arbitrarily many iterations to pass through the piece Ai (while the number of iterations for

a passage through Bi remains bounded). This seems to make it more difficult to explicitly

construct an invariant contracting or expanding cone field, as was done for the piecewise

linear standard map. Moreover, such an invariant cone field construction can not be carried

out uniformly for all θ. In fact, as can be seen from Corollary 5.12, there are parameter

values θK , K = 3, 4, . . ., for which almost hyperbolicity cannot hold on large parts of S, as

the dynamics is completely integrable on the annulus between the invariant circle Γ0
K and

∂S (and even on all of S for θ = θ3 = π
8 , see Remark 5.13).

We are led to leave the following as a question.

Question 5.16. Are there parameter values θ for which the map Fθ is almost hyperbolic on

some invariant subset of S? How large is the set of parameters θ for which this is the case?

While it does not seem likely that almost hyperbolicity can be shown for almost all

θ, numerical evidence suggests that for typical θ, the map Fθ has a finite number of ergodic

components of positive Lebesgue measure, in which typical points have dense orbits.

Conjecture 5.17. For Lebesgue almost all θ ∈ (0, π4 ), there is a finite number of F-invariant

sets A1, . . . , Am, each of positive Lebesgue measure, such that F|Ai : Ai → Ai is ergodic for

every i = 1, . . . ,m. Each Ai is a topological annulus with a certain number of elliptic islands

removed from it, and, together with the elliptic islands and the invariant disk inscribed in

C, the Ai form a partition of S.

Numerical experiments also seem to indicate that for many parameter values, the

way in which chaotic and (quasi-)periodic behaviour coexist, that is, the structure of in-

variant annuli containing families of quasi-periodic elliptic islands, can be quite rich, see

Figures 5.5 and 5.6. Besides the total measure of such quasi-periodic elliptic islands, it

would be also interesting to know whether a general scheme for their itineraries, periods

and rotation numbers can be found.
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